精英家教网 > 初中数学 > 题目详情

【题目】根据要求回答问题

(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;
②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.

(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.
甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;
乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;
丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.

【答案】
(1)

解:①结论:BD=CE,BD⊥CE;

②结论:BD=CE,BD⊥CE…1分

理由如下:∵∠BAC=∠DAE=90°

∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE…1分

在△ABD与△ACE中,

∴△ABD≌△ACE(SAS)

∴BD=CE

延长BD交AC于F,交CE于H.

在△ABF与△HCF中,

∵∠ABF=∠HCF,∠AFB=∠HFC

∴∠CHF=∠BAF=90°

∴BD⊥CE


(2)

解:结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°


【解析】(1)①BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;然后在△ABD和△CDF中,由三角形内角和定理可以求得∠CFD=90°,即BD⊥CF;
②BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;作辅助线(延长BD交AC于F,交CE于H)BH构建对顶角∠ABF=∠HCF,再根据三角形内角和定理证得∠BHC=90°;(2)根据结论①、②的证明过程知,∠BAC=∠DFC(或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).

(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1

(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形……,如此操作下去,那么,第6个三角形的直角顶点坐标为(  )

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,点E、F在对角线BD上,且BE=DF.求证:

(1)ABE≌△CDF;

(2)四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算中,结果正确的是( )
A.(﹣2y)3=﹣6y3
B.(﹣ab23=﹣ab6
C.(﹣a)3÷(﹣a2)=a
D.( 1﹣22=2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一天李小虎同学用几何画板画图,他先画了两条平行线ABCD,然后在平行线间画了一点E,连接BEDE后(如图),他用鼠标左键点住点E,拖动后,分别得到如图等图形,这时他突然一想,BD与∠BED之间的度数有没有某种联系呢?接着小虎同学通过利用几何画板度量角度计算功能,找到了这三个角之间的关系.

1)你能探究出图到图各图中的∠B,∠D与∠BED之间的关系吗?

2)请从图②③④中,选一个说明它成立的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】准备一张矩形纸片,按如图操作:将ABE沿BE翻折,使点A落在对角线BD上的M点,将CDF沿DF翻折,使点C落在对角线BD上的N点.

1)求证:四边形BFDE是平行四边形.

2)若四边形BFDE是菱形,BE =2,求菱形BFDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2﹣2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(﹣1,0),O是坐标原点,且|OC|=3|OA|

(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案