分析 (1)由四边形ABCD是平行四边形,易得AD=BC,AD∥BC,即可得∠BAD+∠ABC=180°,又由△ABF和△ADE是等腰直角三角形,可得AE=BC,∠FAE=∠ABC,即可证得△FAE≌△BAC;又由△ABC≌△CDA,可得△FAE≌△CDA;
(2)根据第一问结论,得出△AEF≌△DAC≌△CIJ,△BGH≌△DKL≌△CDB,阴影部分四个三角形的面积和是?ABCD的面积的2倍,据此即可求解.
解答 (1)△FAE≌△BAC或△FAE≌△CDA.
证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠BAD+∠ABC=180°,
∵△ABF和△ADE是等腰直角三角形,
∴AF=AB,AE=AD,∠BAF=∠DAE=90°,
∴AE=BC,∠FAE+∠BAD=360°-∠BAF-∠DAE=180°,
∴∠FAE=∠ABC,
在△FAE和△ABC中,
$\left\{\begin{array}{l}{AF=AB}\\{∠FAE=∠ABC}\\{AE=BC}\end{array}\right.$,
∴△FAE≌△ABC(SAS).
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
在△ABC和△CDA中,
$\left\{\begin{array}{l}{AB=CD}\\{AC=CA}\\{BC=DA}\end{array}\right.$,
∴△ABC≌△CDA(SSS),
∴△FAE≌△CDA.
(2)与(1)同理,在图形②中,△AEF≌△DAC≌△CIJ,△BGH≌△DKL≌△CDB,
∴四个三角形的面积和为:?ABCD的面积×2=S,
?ABCD的面积=$\frac{1}{2}$S.
点评 本题主要考查了平行四边形的性质,以及全等三角形的判定与性质,正确证明△FAE≌△CDA是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{x-1}{{x}^{2}}$ | B. | $\frac{x+1}{{x}^{2}-2}$ | C. | $\frac{x+1}{-{x}^{2}-1}$ | D. | $\frac{2x-1}{x+3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com