【题目】如图,A(0,2),B(6,2),C(0,c)(c>0),以A为圆心AB长为半径的交y轴正半轴于点D,与BC有交点时,交点为E,P为上一点.
(1)若c=6+2,
①BC=_____,的长为_____;
②当CP=6时,判断CP与⊙A的位置关系,并加以证明;
(2)若c=10,求点P与BC距离的最大值;
(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)
【答案】(1)①12,π;②CP与⊙A相切;(2)若c=10,点P与BC距离的最大值是;(3)c=1时,PM=;c=6时,PF=6﹣;c=9时,PF=6﹣;c=11时,PG=.
【解析】
(1)①先求出AB,AC,进而求出BC和∠ABC,最后用弧长公式即可得出结论;②判断出△APC是直角三角形,即可得出结论;
(2)分两种情况,利用三角形的面积或锐角三角函数即可得出结论;
(3)画图图形,同(2)的方法即可得出结论.
解:(1)①如图1,连接AE,
∵c=6+2,
∴OC=6+2,
∴AC=6+2﹣2=6,∵AB=6,
在Rt△BAC中,根据勾股定理得,BC=12,tan∠ABC==,
∴∠ABC=60°,
∵AE=AB,
∴△ABE是等边三角形,
∴∠BAE=60°,
∴∠DAE=30°,
∴的长为=π,
故答案为12,π;
②CP与⊙A相切.
证明:∵AP=AB=6,AC=OC﹣OA=6,
∴AP2+CP2=108.
又AC2=(6)2=108,
∴AP2+PC2=AC2.
∴∠APC=90°,即:CP⊥AP.
而AP是半径,
∴CP与⊙A相切.
(2)若c=10,即AC=10﹣2=8,则BC=10.
①若点P在上,AP⊥BE时,点P与BC的距离最大,设垂足为F,
则PF的长就是最大距离,如图2,
S△ABC=AB×AC=BC×AF,
∴AF==,
∴PF=AP﹣AF=
②如图3,若点P在上,作PG⊥BC于点G,
当点P与点D重合时,PG最大.
此时,sin∠ACB=,
即PG==.
∴若c=10,点P与BC距离的最大值是;
(3)当c=1时,如图4
过点P作PM⊥BC,sin∠BCP=
∴PM==;
当c=6时,如图5,同c=10的①情况,PF=6﹣,
当c=9时,如图6,同c=10的①情况,PF=6﹣,
当c=11时,如图7,
点P和点D重合时,点P到BC的距离最大,同c=10时②情况,PG=.
科目:初中数学 来源: 题型:
【题目】某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:
数量/条 | 平均每条鱼的质量/kg | |
第1次捕捞 | 20 | 1.6 |
第2次捕捞 | 15 | 2.0 |
第3次捕捞 | 15 | 1.8 |
(1)求样本中平均每条鱼的质量;
(2)估计鱼塘中该种鱼的总质量;
(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1.在平面直角坐标系中,抛物线与轴相交于两点,顶点为,设点是轴的正半轴上一点,将抛物线绕点旋转,得到新的抛物线.
求抛物线的函数表达式:
若抛物线与抛物线在轴的右侧有两个不同的公共点,求的取值范围.
如图2,是第一象限内抛物线上一点,它到两坐标轴的距离相等,点在抛物线上的对应点,设是上的动点,是上的动点,试探究四边形能否成为正方形?若能,求出的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,E为AC上一点,直线ED与AB延长线交于点F,若∠CDE=∠DAC,AC=12.
(1)求⊙O半径;
(2)求证:DE为⊙O的切线;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为 24m 的篱笆,现一面利用墙(墙的最大可用长度 a 为 10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽 AB 为 xm,面积为 Sm2.
(1) 求 S 与 x 的函数关系式及 x 值的取值范围;
(2) 要围成面积为 45m2 的花圃,AB 的长是多少米?
(3) 当 AB 的长是多少米时,围成的花圃的面积最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.
抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小刚被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为 ;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,点,点,过点的直线垂直于线段,点是直线上在第一象限内的一动点,过点作轴,垂足为,把沿翻折,使点落在点处,若以,,为顶点的三角形与△ABP相似,则满足此条件的点的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则DE= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com