【题目】已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.
当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE= OC;
当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.
【答案】证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.
有△CPD≌△CQE,
∴DP=EQ,
∵OP=OD+DP,OQ=OE-EQ,
又∵OP+OQ= OC,
即OD+DP+OE-EQ= OC,
∴OD+OE= OC.
图③不成立,
有数量关系:OE-OD= OC
过点C分别作CK⊥OA, CH⊥OB, ∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB, ∴CK=CH,∠CKD=∠CHE=90°, 又∵∠KCD与∠HCE都为旋转角, ∴∠KCD=∠HCE, ∴△CKD≌△CHE, ∴DK=EH, ∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK, 由(1)知:OH+OK= OC, ∴OD,OE,OC满足OE-OD= OC.
【解析】模仿第1种特例,过点C作垂线,构造出全等的三角形,即△CPD≌△CQE,由对应边相等可得出另两个类似的结论.
科目:初中数学 来源: 题型:
【题目】已知:点A在射线CE上,∠C=∠D.
⑴如图1,若AD∥BC,求证:BD∥AC;
⑵如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;
⑶如图3,在⑵的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点,,,点是三角形边上任意一点,三角形经过平移后得到三角形,点的对应点为.
(1)直接写出点的坐标______________.
(2)画出三角形平移后的三角形.
(3)在轴上是否存在一点,使三角形的面积等于三角形面积的,若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为__ , 并把条形统计图补充完整;
(2)扇形统计图中m=10 , n=20 , 表示“足球”的扇形的圆心角是多少度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,∠BAD、∠ADC的平分线AE、DF分别与线段BC相交于点E、F,∠DFC=30°,AE与DF相交干点G,则∠AEC=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )
A.1
B.1或5
C.3
D.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com