精英家教网 > 初中数学 > 题目详情

【题目】已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.
当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE= OC;
当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.

【答案】证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.

有△CPD≌△CQE,
∴DP=EQ,
∵OP=OD+DP,OQ=OE-EQ,
又∵OP+OQ= OC,
即OD+DP+OE-EQ= OC,
∴OD+OE= OC.
图③不成立,
有数量关系:OE-OD= OC
过点C分别作CK⊥OA, CH⊥OB, ∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB, ∴CK=CH,∠CKD=∠CHE=90°, 又∵∠KCD与∠HCE都为旋转角, ∴∠KCD=∠HCE, ∴△CKD≌△CHE, ∴DK=EH, ∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK, 由(1)知:OH+OK= OC, ∴OD,OE,OC满足OE-OD= OC.
【解析】模仿第1种特例,过点C作垂线,构造出全等的三角形,即△CPD≌△CQE,由对应边相等可得出另两个类似的结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,C点在EF上,BC平分,且.下列结论:

AC平分;②;③;④.其中结论正确的个数有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点A在射线CE上,∠C=∠D

⑴如图1,若ADBC,求证:BDAC

⑵如图2,若∠BAC=∠BADBDBC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;

⑶如图3,在⑵的条件下,过点DDFBC交射线于点F,当∠DFE8DAE时,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点,点是三角形上任意一点,三角形经过平移后得到三角形,点的对应点为.

1)直接写出点的坐标______________.

2)画出三角形平移后的三角形.

3)在轴上是否存在一点,使三角形的面积等于三角形面积的,若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点A是反比例函数y=-图象上一点,过点Ax轴的垂线,垂足为B点,若OA=2,则AOB的周长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:

(1)九(1)班的学生人数为__ , 并把条形统计图补充完整;
(2)扇形统计图中m=10 , n=20 , 表示“足球”的扇形的圆心角是多少度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABCD,∠BAD、∠ADC的平分线AEDF分别与线段BC相交于点EF,∠DFC=30°,AEDF相交干点G,则∠AEC=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 ,把不等式组的解集在数轴上表示出来,并求出不等式组的整数解的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )

A.1
B.1或5
C.3
D.5

查看答案和解析>>

同步练习册答案