精英家教网 > 初中数学 > 题目详情

如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为(  )平方米.

A. 96 B. 204 C. 196 D. 304

A 【解析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差. 【解析】 连接AC, 则在Rt△ADC中, AC2=CD2+AD2=122+92=225, ∴AC=15,在△ABC中,AB2=1521, AC2+BC2=152+362=1521, ∴AB2=AC2+BC2, ∴∠ACB=90...
练习册系列答案
相关习题

科目:初中数学 来源:广东省汕头市澄海区2018届九年级上学期期末质量检测数学试卷 题型:填空题

若一元二次方程有一根为,则__________.

2018 【解析】试题解析: 把x=?1代入方程有: a+b?2018=0, 即a+b=2018. 故答案为:2018.

查看答案和解析>>

科目:初中数学 来源:广西合浦县2017年秋季学期教学质量监测七年级数学试卷 题型:填空题

关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负,则实数m的取值范围是______________

m>0.5 【解析】试题解析:关于的一元二次方程的两实数根之积为负, 解得: 故答案为:

查看答案和解析>>

科目:初中数学 来源:广东省东莞市翰林学校2017-2018学年八年级(上)期中数学试卷(word版含答案解析) 题型:解答题

计算:|﹣2|+﹣(﹣1)2017.

1 【解析】试题分析:根据绝对值,立方根和-1的奇数次幂的计算法则求出各数的值,然后进行求和得出答案. 试题解析:原式=2﹣2+1=1.

查看答案和解析>>

科目:初中数学 来源:广东省东莞市翰林学校2017-2018学年八年级(上)期中数学试卷(word版含答案解析) 题型:填空题

计算:(﹣)﹣2+(﹣2017)0=_____.

5 【解析】原式=4+1=5.

查看答案和解析>>

科目:初中数学 来源:广东省东莞市翰林学校2017-2018学年八年级(上)期中数学试卷(word版含答案解析) 题型:单选题

式子在实数范围内有意义,则x的取值范围是()

A. x>1 B. x≥1 C. x<1 D. x≤1

B 【解析】试题分析:根据被开方数大于等于0列式计算即可得解.由题意得,x﹣1≥0, 解得x≥1.故选B.

查看答案和解析>>

科目:初中数学 来源:山东省德州地区2017-2018学年度九年级第一学期期末检测数学试卷 题型:解答题

如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD.

(1)猜想AC与⊙O的位置关系,并证明你的猜想;

(2)试判断四边形BOCD的形状,并证明你的判断;

(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r.

(1)猜想:AC与⊙O相切(2)四边形BOCD为菱形(3) 【解析】试题分析:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的判定方法和圆锥的计算.(1)根据等腰三角形的性质得∠A=∠ABC=30°,再由OB=OC得∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根据切线的判定定理即可得到,AC是⊙O的切线; (2)连结...

查看答案和解析>>

科目:初中数学 来源:山东省德州地区2017-2018学年度九年级第一学期期末检测数学试卷 题型:单选题

某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为,则可列方程为(  )。

A. B.

C. D.

D 【解析】试题分析:依题意得三月份的营业额为36(1+x)2, ∴36(1+x)2=48. 故选D.

查看答案和解析>>

科目:初中数学 来源:2018人教版九年级数学下册练习:第二十八章 达标检测卷 题型:单选题

如图,小叶与小高欲测量公园内某棵树DE的高度.他们在这棵树正前方的一座楼亭前的台阶上的点A处测得这棵树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得这棵树顶端D的仰角为60°.已知点A的高度AB为3 m,台阶AC的坡度为1∶,且B,C,E三点在同一条直线上,那么这棵树DE的高度为(  )

A. 6 m B. 7 m C. 8 m D. 9 m

D 【解析】过点A作AF⊥DE于点F,则四边形ABEF为矩形, ∴AF=BE,EF=AB=3m. 设DE=xm,在Rt△CDE中,CE==xm. 在Rt△ABC中,∵=,AB=3m, ∴BC=3m. 在Rt△AFD中,DF=DE-EF=(x-3) m, ∴AF== (x-3) m. ∵AF=BE=BC+CE, ∴ (x-3)=3+x, 解...

查看答案和解析>>

同步练习册答案