精英家教网 > 初中数学 > 题目详情
已知抛物线的顶点P(3,-2)且在x轴上所截得的线段AB的长为4.
(1)求此抛物线的解析式;
(2)抛物线上是否存在点Q,使△QAB的面积等于12?若存在,求点Q的坐标;若不存在,请说明理由.
分析:(1)设A在左边,根据抛物线的对称性可得出A的坐标为(1,0),B的坐标为(5,0),从而设出抛物线的两点式,将顶点坐标代入可得出抛物线的解析式;
(2)设出点Q的坐标,表示出△QAB的面积,继而建立方程,求解即可.
解答:解:(1)∵抛物线的顶点P(3,-2),
∴抛物线的对称轴为直线x=3,
又∵在x轴上所截得的线段AB的长为4,设A在左边,
∴点A的坐标为(1,0),点B的坐标为(5,0),
设抛物线的解析式为:y=a(x-1)(x-5),
将点P(3,-2)代入可得:-2=a(3-1)(3-5),
解得:a=
1
2

故抛物线的解析式为:y=
1
2
(x-1)(x-5)=
1
2
x2-3x+
5
2


(2)设存在点Q的坐标,点Q的坐标为(x,
1
2
x2-3x+
5
2
),
∵△QAB的面积等于12,
1
2
AB×|
1
2
x2-3x+
5
2
|=12,
1
2
x2-3x+
5
2
=±6,
方程
1
2
x2-3x+
5
2
=-6无解,则
1
2
x2-3x+
5
2
=6,
解得:x1=7,x2=-1.
故可得点Q的坐标为(-1,6)或(7,6).
点评:此题考查了二次函数的综合题,涉及了待定系数法求函数解析式及三角形的面积,根据对称性求出与x轴的交点是解题的关键,第二问的求解需要我们借助方程,注意△ABQ的面积表达式的出得.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线的顶点是C(0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线上任意一点,过P作PH丄x轴.垂足是H,求证:PD=PH;
(3)设过原点O的直线l与抛物线在笫一象限相交于A、B两点,若DA=2DB.且S△ABD=4
2
.求a的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线的顶点A在y轴上,坐标A(0,1)矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),S矩形CDEF=8
(1)求此抛物线的解析式;
(2)过B作直线MN,与抛物线交于点M、N,过M、N分别向x轴作垂线MR、NQ,分别交x轴于R、Q,求证:MR=MB;
(3)在线段QR上是否存在一个点P,使得以点P、R、M为顶点的三角形和以P、N、Q为顶点的三角形相似?若存在.请说明理由,并找出P的位置;若不存在,也请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式及点A、B、C的坐标;
(2)直线AN交y轴于点F,P是抛物线的对称轴x=1上动点,H是X轴上一动点,请探索:是否存在这样的P、H,使四边形CFHP的周长最短?若存在,请求出四边形CFHP的最短周长和点P、H的坐标;若不存在,请说明理由;
(3)若点Q是∠MDB的角平分线上动点,点R是线段DB上的动点,Q、R在何位置时,BQ+QR的值最小.请直接写出BQ+QR的最小值和Q、R的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线的顶点在y轴上,且经过点A(0,4),B(3,7)两点,求这个函数的表达式.

查看答案和解析>>

同步练习册答案