精英家教网 > 初中数学 > 题目详情
17、已知,如图,矩形ABCD中,AC与BD相交于点O,BE⊥AC于E,CF⊥BD于F.
求证:BE=CF.
分析:长方形对角线相等且互相平分,即可证明OC=OB,进而证明△BOE≌△COF,即可得:BE=CF.
解答:解:矩形对角线互相平分且相等,
∴OB=OC,
∵∠BEO=∠CFO,∠BOE=∠COF
∴△BOE≌△COF(AAS),
∴BE=CF.
点评:本题考查了矩形对角线相等且互相平分的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,本题中求证△BOE≌△COF是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,矩形ABCD中,E、F是AB上的两点,且AF=BE.求证:∠ADE=∠BCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知,如图,矩形ABCD中,E是CD的中点,连接BE并延长BE交AD的延长线于点F,连接AE.
(1)求证:AD=DF;
(2)若AD=3,AE⊥BE,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA精英家教网上,AH=2,连接CF.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,矩形ABCD中,点E在边AB上,∠DEB的平分线EF交BC的延长线于点F,且AB=BF,连接DF.
(1)若tan∠FDC=
12
,AD=1,求DF的长;
(2)求证:DE=BE+CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案