精英家教网 > 初中数学 > 题目详情
如图,∠AOB=30°,过OA上到点O的距离为1,3,5,7,…的点作OA的垂线,分别与OB相交,得到如图所示的阴影梯形,它们的面积依次记为S1,S2,S3,….则:
(1)S1=   
(2)通过计算可得S2009=   
【答案】分析:(1)分析知奇数的通式为:2n-1(n为正整数),设阴影梯形的上底和下底距点O的长分别为a和b,则可以表达出Sn的表达式,将每个梯形的上底和下底距点O的长代入,求解即可;
(2)第2009个梯形前面已有2008×2个奇数,2009个梯形上底距点O的距离为第2008×2+1个奇数,下底为第2008×2+2个奇数.
解答:解:(1)设阴影梯形的上底和下底距点O的长分别为a和b,
则Sn=b×btan∠AOB-a×atan∠AOB=(b2-a2),
又∵梯形1距离点O的距离a=1,b=3,
∴S1=(32-12)=

(2)第2009个梯形前面已有2008×2个奇数,
2009个梯形上底距点O的距离为第2008×2+1个奇数,
下底为第2008×2+2个奇数,
∴第2009个梯形的两边长分别为:
a=2×(2008×2+1)-1=8033,
b=2×(2008×2+1)+1=8035,
故S2009=(80352-80332)=5356
点评:本题考查学生分析、探究问题及运用规律解决问题的能力.有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,∠AOB=30°,M为OB边上任意一点,以M为圆心,r为半径的⊙M,当⊙M与OA相切时,OM=2cm,则r=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,∠AOB=30°,射线OA上有一动点H(点H不与点O重合),PH⊥OA交OB于点P,线段PH沿着射线OA方向平移,则线段OP与线段PH之间始终存在数量关系:OP=
2
PH.

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠AOB=30°,点P为∠AOB内一点,OP=10,点M、N分别在OA、OB上,求△PMN周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠AOB=30°,内有一点P且OP=
6
,若M、N为边OA、OB上两动点,那么△PMN的周长最小为(  )

查看答案和解析>>

同步练习册答案