精英家教网 > 初中数学 > 题目详情
1.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为-1.

分析 由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.

解答 解:由已知得:$\left\{\begin{array}{l}{2k+3>0}\\{k<0}\end{array}\right.$,
解得:-$\frac{3}{2}$<k<0.
∵k为整数,
∴k=-1.
故答案为:-1.

点评 本题考查了一次函数图象与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象与系数的关系找出关于系数的不等式(或不等式组)是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.
求证:BC=AD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是(  )
A.$\sqrt{7}$B.2$\sqrt{2}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.
(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;
(2)在图2中画出线段AB的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系中,△ABC三个顶点坐标为A(-$\sqrt{3}$,0)、B($\sqrt{3}$,0)、C(0,3).
(1)求△ABC内切圆⊙D的半径.
(2)过点E(0,-1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.
(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2$\sqrt{7}$为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则$\frac{{S}_{正方形MNPQ}}{{S}_{正方形AEFG}}$的值等于$\frac{8}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分  组频数频率
第一组(0≤x<15)30.15
第二组(15≤x<30)6a
第三组(30≤x<45)70.35
第四组(45≤x<60)b0.20
(1)频数分布表中a=0.3,b=4,并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0,1两个不变值,其不变长度q等于1.
(1)分别判断函数y=x-1,y=$\frac{1}{x}$,y=x2有没有不变值?如果有,直接写出其不变长度;
(2)函数y=2x2-bx.
①若其不变长度为零,求b的值;
②若1≤b≤3,求其不变长度q的取值范围;
(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2.函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.

查看答案和解析>>

同步练习册答案