精英家教网 > 初中数学 > 题目详情

黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:
(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;
(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;
(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.

解:(1)不能;
当黑板上的三个数为1、2、3时,不论进行哪种操作都不能改变3个数的奇偶性,即三个数必为2个奇数1个偶数,
因此不能变为56、57、58.
(2)不能;
若能,则2007一定可以表示为两个正整数的平方和,即2007=m2+n2(m,n为正整数).
又任意一个自然数m,必有m2≡0(mod4)或m2≡1(mod4),
所以m2+n2≡0(mod4)或m2+n2≡1(mod4)或m2+n2≡2(mod4),而2007≡3(mod4),
因此不可能.
(3)不能;
若能,由(2)知,因为2008≡0(mod4),不妨设2008=(2m)2+(2n)2(其中m、n为正整数),
因此m2+n2=502.又任意一个自然数m,必有m2≡0(mod8)或m2≡1(mod8),
所以m2+n2≡0(mod8)或m2+n2≡1(mod8)或m2+n2≡2(mod8),而502≡6(mod8),
因此不可能.
分析:(1)首先要知道平方不能改变一个数的奇偶性,而且题目的操作都不能改变3个数的奇偶性,由这可以判断不能变为56、57、58;
(2)不能;若能,则2007一定可以表示为两个正整数的平方和,即2007=m2+n2(m,n为正整数),然后利用余数定理得到2007与3被4除余数相同,而m2+n2不可能被4除余数是3,所以假设是错误的;
(3)不能;若能,由(2)知,因为2008≡0(mod4),同样根据(2)可以推出m2+n2不可能被4除余数是0,所以假设是错误的.
点评:此题是竞赛题,主要考查了奇偶性,余数定理,可能有的符号还不能理解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:
(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;
(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;
(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:
(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;
(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;
(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年浙江省温州中学自主招生考试数学试卷(A卷)(解析版) 题型:解答题

黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:
(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;
(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;
(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.

查看答案和解析>>

同步练习册答案