分析 (1)过C点作CE⊥y轴于点E,根据AAS证明△AOB≌△BEC,根据全等三角形的性质即可得到点C的坐标;
(2)根据全等三角形的性质的性质和等量代换可得∠1=∠2,根据ASA证明△ABM≌△CBN,根据全等三角形的性质即可得到BM=BN;
(3)根据SAS证明△DAH≌△GAH,根据全等三角形的性质即可求解.
解答 (1)解:过C点作CE⊥y轴于点E,
∵CE⊥y轴,
∴∠BEC=90°,
∴∠BEC=∠AOB,
∵AB⊥BC,
∴∠ABC=90°,
∴∠ABO+∠CBE=90°,
∵∠ABO+∠BAO=90°,
∴∠CBE=∠BAO,
在△AOB与△BEC中,
$\left\{\begin{array}{l}{∠BEC=∠AOB}\\{∠CBE=∠BAO}\\{BC=BA}\end{array}\right.$,
∴△AOB≌△BEC(AAS),
∴CE=OB=n,BE=OA=m,
∴OE=OB+BE=m+n,
∴点C的坐标为(n,m+n).
故答案为:(n,m+n);
(2)证明:∵△AOB≌△BEC,
∴BE=OA=OP,CE=BO,
∴PE=OB=CE,
∴∠EPC=45°,
∠APC=90°,
∴∠1=∠2,
在△ABM与△CBN中,
$\left\{\begin{array}{l}{∠ABM=∠CBN}\\{∠1=∠2}\\{AB=CB}\end{array}\right.$,
∴△ABM≌△CBN(ASA),
∴BM=BN;
(3)证明:∵点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,
∴AD=AC,AG=AC,
∴AD=AG,
∵∠1=∠5,∠1=∠6,
∴∠5=∠6,
在△DAH与△GAH中,
$\left\{\begin{array}{l}{AD=AG}\\{∠5=∠6}\\{AH=AH}\end{array}\right.$,
∴△DAH≌△GAH(SAS),
∴D,G关于x轴对称.
点评 考查了几何变换综合题,涉及的知识点有:全等三角形的判定和性质,关于直线对称的性质.关键是AAS证明△AOB≌△BEC,ASA证明△ABM≌△CBN,SAS证明△DAH≌△GAH.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com