精英家教网 > 初中数学 > 题目详情

已知点P为线段AB的黄金分割点(AP>BP),且AB=2,求BP的长.

解析试题分析:本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的 .
试题解析:由于P为线段AB=2的黄金分割点,
且AP>BP,
 .
.
考点:黄金分割.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.则       (填“<”或“=”或“>”);
(2)如图2,若四边形ABCD是平行四边形,试探究:
当∠B与∠EGC满足什么关系时,使得=成立?并证明你的结论;
(3)如图3,若BA="BC=" 3,DA="DC=" 4,∠BAD= 90°,DE⊥CF.则的值为        

图1                     图2                     图3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD,垂足为E.

(1)求证:△ABE∽△DBC;
(2)求线段AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,在正方形ABCD中,AB=1,点E在AB延长线上,联结CE、DE,DE交边BC于点F,设BE,CF

图1
(1)求关于的函数解析式,并写出的取值范围;
(2)如图2,对角线AC、BD的交点记作O,直线OF交线段CE于点G,求证:

图2
(3)在(2)的条件下,当时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,∴P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交边AD于点F,交CD的延长线于点G.

(1)求证:△APB≌△APD;
(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.
①求y与x的函数关系式;
②当x=6时,求线段FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.

(1)当PE⊥AB,PF⊥BC时,如图1,则的值为     
(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;
(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形ABCD中,AB=12cm,AD=16cm,动点E、F分别从A点、C点同时出发,均以2cm/s的速度分别沿AD向D点和沿CB向B点运动。

(1)经过几秒首次可使EF⊥AC?
(2)若EF⊥AC,在线段AC上,是否存在一点P,使?若存在,请说明P点的位置,并予以证明;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知在△ABC与△DEF中,∠C=54°,∠A=47°,∠F=54°,∠E=79°,
求证:△ABC∽△DEF

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案