精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知△ABC为等边三角形,D,E,F分别在边BC,CA,AB上,且△DEF也是等边三角形,除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的.
分析:易证∠CED=∠BDF,进而可以求证△BDF≌△CED,同理可求得△BDF≌△AFE,根据全等三角形的传递性,即可求得△BDF≌△CED≌△AFE,即可解题.
解答:解:AE=CD=BF,AF=BD=CE.
证明:∵△ABC为等边三角形,△DEF也是等边三角形,
∴∠C=∠EDF=60°,DE=DF,
∵∠CED+∠DCE=∠BDE=∠BDF+∠EDF,
∴∠CED=∠BDF,
在△BDF和△CED中,
∠DBF=∠ECD
∠CED=∠BDF
ED=DF

∴△BDF≌△CED(AAS),
同理可证△BDF≌△AFE,
∴△BDF≌△AFE≌△CED,
∴AE=CD=BF,AF=BD=CE.
点评:本题考查了全等三角形的证明和全等三角形对应边相等的性质,等边三角形各边长相等和等边三角形各内角为60°的性质,本题中求证△BDF≌△AFE≌△CED是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3精英家教网,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.
(1)用m表示点A、D的坐标;
(2)求这个二次函数的解析式;
(3)点Q为二次函数图象上点P至点B之间的一点,且点Q到△ABC边BC、AC的距离相等,连接PQ、BQ,求四边形ABQP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,已知△ABC为等边三角形,D、F分别为BC、AB边上的点,CD=BF,以AD为边作等边△ADE.
(1)△ACD和△CBF全等吗?请说明理由;
(2)判断四边形CDEF的形状,并说明理由;
(3)当点D在线段BC上移动到何处时,∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC为等边三角形,点D.E分别在BC.AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠AFE的度数.

查看答案和解析>>

同步练习册答案