精英家教网 > 初中数学 > 题目详情
在正方形网格中,建立如图所示的平面直角坐标系xoy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C,并写出点A2,B2的坐标.
(1)△A1B1C1如图所示,A1(-4,4),B1(-1,1),C1(-3,1);

(2)△A2B2C如图所示,A2(0,2),B2(3,-1).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

边长为
13
的菱形OACB在平面直角坐标系中的位置如图所示,将该菱形绕其对角线的交点顺时针旋转90°后,再向右平移3个单位,则两次变换后点C对应点C′的坐标为(  )
A.(2,4)B.(2,5)C.(5,2)D.(6,2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,将其长度伸长为OP0的2倍,得到线段OP1;再将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数)
(1)求点P6的坐标;
(2)求△P5OP6的面积;
(3)我们规定:把点Pn(xn,yn)(n=0,1,2,3,…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点Pn的“绝对坐标”,并写出来.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,看点A的坐标为(2,1),则点A′坐标为(  )
A.(-1,-2)B.(-1,2)C.(-2,1)D.(-2,-1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.
活动一:如图1,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,求阴影部分的面积.

小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积:______.
活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,求AE的长.

小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图4所示),则①四边形AECG是怎样的特殊四边形?答:______.AE的长是______.
活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)作出将△ABC绕点O顺时针方向旋转180°后的△A2B2C2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,△ABC为等边三角形,其中点A、B、C的坐标分别为(-3,-1)、(-3,-3)、(-3+
3
,-2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的对称图形,得△A2B2C2
(1)直接写出点C1、C2的坐标;
(2)能否通过一次旋转将△ABC旋转到△A2B2C2的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由);
(3)设当△ABC的位置发生变化时,△A2B2C2、△A1B1C1与△ABC之间的对称关系始终保持不变.
①当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合并直接写出此时点C的坐标;
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少点C的坐标又是什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,如何作出该图案绕O点按逆时针旋转90°的图形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

分析下图①②④中阴影部分的分布规律,按此规律在图③中画出其阴影部分,在图①中补图使之成为轴对称图形,在图②中补图使之成为中心对称图形.

查看答案和解析>>

同步练习册答案