精英家教网 > 初中数学 > 题目详情

【题目】某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?

【答案】解:设每轮传染中平均每个人传染了x人,依题意得1+x+x(1+x)=121,
∴x=10或x=﹣12(不合题意,舍去).
所以,每轮传染中平均一个人传染了10个人
【解析】设每轮传染中平均每个人传染了x人,那么第一轮有(x+1)人患了流感,第二轮有x(x+1)人被传染,然后根据共有121人患了流感即可列出方程解题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线 与x轴相交于点A,与y轴相交于点B.
(1)直接写出A点的坐标;
(2)当x 时,y≤4;
(3)过B点作直线BP与x轴相交于P,若OP=2OA时,求ΔABP的面积。
(4)在y轴上是否存在E点,使得ΔABE为等腰三角形,若存在,直接写出满足条件的E点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不解方程,判断方程2x2﹣3x+1=0的根的情况是(
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.

请结合统计图,回答下列问题:

(1)本次调查学生共 人,a= ,并将条形图补充完整;

(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?

(3)学校让每班在A、B、C、D四钟活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【探究函数y=x+的图象与性质】

(1)函数y=x+的自变量x的取值范围是

(2)下列四个函数图象中函数y=x+的图象大致是

(3)对于函数y=x+,求当x>0时,y的取值范围.

请将下列的求解过程补充完整.

解:x>0

y=x+=(2+(2=(2+

2≥0

y≥

[拓展运用]

(4)若函数y=,则y的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若(1﹣m)2+|n+2|=0,则m+n的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:

①∠ABC=ADC;

AC与BD相互平分;

AC,BD分别平分四边形ABCD的两组对角;

四边形ABCD的面积S=ACBD.

正确的是 (填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.

(1)活动中心与小宇家相距 千米,小宇在活动中心活动时间为 小时,他从活动中心返家时,步行用了 小时;

(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);

(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:

销售方式

批发

零售

储藏后销售

售价(元/吨)

3000

4500

5500

成本(元/吨)

700

1000

1200

若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的
(1)求y与x之间的函数关系式;
(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.

查看答案和解析>>

同步练习册答案