【题目】如图,在边长为的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:
三角形的直角边长/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
阴影部分的面积/ | 398 | 392 | 382 | 368 | 350 | 302 | 272 | 200 |
(1)在这个变化过程中,自变量、因变量各是什么?
(2)请将上述表格补充完整;
(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积是怎样变化的?
(4)设等腰直角三角形的直角边长为,图中阴影部分的面积为,写出与的关系式.
【答案】(1) 自变量:三角形的直角边长,因变量:阴影部分的面积;(2)见解析;(3) .
【解析】
(1)根据定义确定自变量、因变量即可;
(2)根据题意计算即可;
(3)观察数据表格确定阴影面积变化趋势;
(4)阴影面积为正方形面积减去四个等腰直角三角形面积.
解:(1)在这个变化过程中,自变量:三角形的直角边长,因变量:阴影部分的面积;
(2)等腰直角三角形直角边长为6时,阴影面积为202-4× ×62=328,
等腰直角三角形直角边长为9时,阴影面积为202-4××92=238;
三角形的直角边长/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
阴影部分的面积/ | 328 | 238 |
(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积由减小到;
(4).
故答案为:(1) 自变量:三角形的直角边长,因变量:阴影部分的面积; (2)见解析; (3) .
科目:初中数学 来源: 题型:
【题目】一场暴雨过后,一洼地存雨水20米 3,如果将雨水全部排完需 t分钟,排水量为 a米 3/分,且排水时间为5~10分钟
(1)试写出 t与 a的函数关系式,并指出 a的取值范围;
(2)请画出函数图象
(3)根据图象回答:当排水量为3米 3/分时,排水的时间需要多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.
(1)请你为该景区设计购买两种设备的方案;
(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=(a+2)x2+2ax+a﹣1的图象与x轴有交点,且关于x的分式方程+1=的解为整数,则所有满足条件的整数a之和为( )
A.﹣4B.﹣6C.﹣8D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于( )
A. 4:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABD中,C为BD上一点,使得CA=CD,过点C作CE∥AD交AB于点E,过点D作DF⊥AD交AC的处长线于点F.
(1)若CD=3,求AF的长;
(2)若∠B=30°,∠ADC=40°,求证:AC=EC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初三年级261位学生参加期末考试,某班35位学生的语文成绩、数学成绩与总成绩在全年级中排名情况如图1和图2所示,甲、乙、丙为该班三位学生.
从这次考试成绩看,①在甲、乙两人中,总成绩名次靠前的学生是______;
②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是______.
你选择的理由是____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com