精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,对角线AC的长为10,且AB、BC(AB>BC)的长是关于x的方程x2+2(1-m)x+6m=0的两个根.
(1)求m的值;
(2)若E是AB上的一点,CF⊥DE于F,求BE为何值时,△CEF的面积是△CED的面积的
13
,请说明理由.精英家教网
分析:(1)已知AB、BC(AB>BC)的长是关于x的方程x2+2(1-m)x+6m=0的两个根,根据根与系数的关系得到一个关于m的一元二次方程,解此方程可得m的值.
(2)当△CEF的面积是△CED的面积的
1
3
时,必须满足DE=3EF,又△EAD∽△DFC,根据三角形相似的性质可得到一个关于BE的一元二次方程,解此方程可得BE的值.
解答:解:(1)已知AB、BC(AB>BC)的长是关于x的方程x2+2(1-m)x+6m=0的两个根,根据根与系数的关系得到:
∴AB+BC=2m-2,AB•BC=6m,
∴AB2+BC2=(2m-2)2-2AB•BC=4m2-20m+4,
而AB2+BC2=AC2=102
∴4m2-20m+4=102
整理得:m2-5m-24=0,
解得:m=8或m=-3(不合题意,舍去);

(2)解:∵AB∥DC,
∴∠AED=∠FDC,
又∵∠EAD=∠DFC=90°,
∴△EAD∽△DFC
AE
FD
=
DE
CD

又DE=3EF,
∴DE:DF=3:2,
∴DF=
2
3
DE,
可得AE=
DF•DE
CD
=
2DE2
3CD

将m=8代入方程x2+2(1-m)x+6m=0
∴x2+2(1-8)x+6×8=0
∴x2-14x+48=0,
解得:x=6或8,
即AB=CD=8,AD=BC=6,
设AE=y,根据勾股定理得:DE2=AD2+AE2=36+y2
∴y=
2DE2
3CD
=
2
3
×
36+y2
8

即y2-12y+36=0,
解得y=6,
故BE=2.
即BE=2时△CEF的面积是△CED的面积的
1
3
点评:本题主要考查三角形相似的判定与性质,也融合了勾股定理和根与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案