精英家教网 > 初中数学 > 题目详情

【题目】若a,b,c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:
①以a2 , b2 , c2的长为边的三条线段能组成一个三角形;②以的长为边的三条线段能组成一个三角形;③以a+b,c+h,h的长为边的三条线段能组成直角三角形;④以,,的长为边的三条线段能组成直角三角形,正确结论的序号为

【答案】②③
【解析】①直角三角形的三条边满足勾股定理a2+b2=c2 , 因而以a2 , b2 , c2的长为边的三条线段不能满足两边之和大于第三边,故不能组成一个三角形,故错误;②直角三角形的三边有a+b>c(a,b,c中c最大),而在,,三个数中最大,如果能组成一个三角形,则有+>成立,即(+)2>()2 , 即a+b+2>c(由a+b>c),则不等式成立,从而满足两边之和大于第三边,则以,,的长为边的三条线段能组成一个三角形,故正确;③a+b,c+h,h这三个数中 c+h一定最大,(a+b)2+h2=a2+b2+2ab+h2 , (c+h)2=c2+h2+2ch,又∵2ab=2ch=4S△ABC,∴(a+b)2+h2=(c+h)2,根据勾股定理的逆定理即以a+b,c+h,h的长为边的三条线段能组成直角三角形,故正确;④假设a= 3,b=4,c=5,则,,的长为,,,以这三个数的长为边的三条线段不能组成直角三角形,故错误.根据勾股定理和勾股定理的逆定理可判断。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知三角形的两边长分别为14,且第三边长为整数,则第三边长为(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx+b的图象经过点(2,3),与y轴交于点B(0,4),与x轴交于点A.
(1)一次函数的表达式为;
(2)方程kx+b=0的解为;
(3)求该函数图象与两坐标轴围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:

①∠EBG=45°; ②△DEF∽△ABG;

③S△ABG=S△FGH; ④AG+DF=FG.

其中正确的是_____.(填写正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)如图①所示,P是等边△ABC内的一点,连接PA、PB、PC,将△BAP绕B点顺时针旋转60°得△BCQ,连接PQ.若PA2+PB2=PC2,证明∠PQC=90°;

(2)如图②所示,P是等腰直角△ABC(∠ABC=90°)内的一点,连接PA、PB、PC,将△BAP绕B点顺时针旋转90°得△BCQ,连接PQ.当PA、PB、PC满足什么条件时,∠PQC=90°?请说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点E是AB的中点,点P是边BC上的动点,点Q是对角线AC上的动点(包括端点A,C),则EP+PQ的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=1,b=﹣1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若(a42+|b9|=0,则以ab为边长的等腰三角形的周长为_______

查看答案和解析>>

同步练习册答案