精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6CM.点P,Q同时由B,A两点出发,分别沿射线BC,AC方向以1cm/s的速度匀速运动.
(1)几秒后△PCQ的面积是△ABC面积的一半?
(2)连结BQ,几秒后△BPQ是等腰三角形?

【答案】
(1)解:设运动x秒后,△PCQ的面积是△ABC面积的一半,

当0<x<6时,

SABC= ×ACBC= ×6×8=24,

即: ×(8﹣x)×(6﹣x)= ×24,

x2﹣14x+24=0,

(x﹣2)(x﹣12)=0,

x1=12(舍去),x2=2;

当6<x<8时,

×(8﹣x)×(x﹣6)= ×24,

x2﹣14x+72=0,

b2﹣4ac=196﹣288=﹣92<0,

∴此方程无实数根,

当x>8时,

SABC= ×ACBC= ×6×8=24,

即: ×(x﹣8)×(x﹣6)= ×24,

x2﹣14x+24=0,

(x﹣2)(x﹣12)=0,

x1=12,x2=2(舍去),

所以,当2秒或12秒时使得△PCQ的面积等于△ABC的面积的一半


(2)解:设t秒后△BPQ是等腰三角形,

①当BP=BQ时,t2=62+(8﹣t)2

解得:t=

②当PQ=BQ时,(6﹣t)2+(8﹣t)2=62+(8﹣t)2

解得:t=12;

③当BP=PQ时,t2=(6﹣t)2+(8﹣t)2

解得:t=14±4


【解析】(1)设P、Q同时出发,x秒钟后,当0<x<6时,当6<x<8时,当x>8时,由此等量关系列出方程求出符合题意的值;(2)分别根据①当BP=BQ时,②当PQ=BQ时,③当BP=PQ时,利用勾股定理求出即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.
(1)求证:△OAE≌△OBG.
(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;

1)这次抽样调查的样本容量是 ,并补全条形图;

2D等级学生人数占被调查人数的百分比为 ,在扇形统计图中C等级所对应的圆心角为 °

3)该校九年级学生有1500人,请你估计其中A等级的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x2+2(m﹣1)x+36是完全平方式,则m=__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠B=50°,AD是BC边上的高,且∠DAC=20°,则∠BAC=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面内,有三条直线,其中只有两条是平行的,那么交点有( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(  )

A. a15÷b5a3B. 4a3a212a2

C. ab2a2b2D. 2a224a4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为(
A.6
B.12
C.20
D.24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点的位置如图所示,将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
利用网格点画图:

(1)画出△A′B′C′;
(2)画出AB边上的中线CD;
(3)画出BC边上的高线AE;
(4)△A′B′C′的面积为

查看答案和解析>>

同步练习册答案