精英家教网 > 初中数学 > 题目详情

【题目】如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MNAB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD100米,则两景点A、B间的距离为__米(结果保留根号).

【答案】100+100

【解析】由已知可得∠ACD=MCA=45°,B=NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.

MN//AB,MCA=45°,NCB=30°,

∴∠ACD=MCA=45°,B=NCB=30°,

CDAB,∴∠CDA=CDB=90°,DCB=60°,

CD=100米,∴AD=CD=100米,DB=CDtan60°=CD=100米,

AB=AD+DB=100+100(米),

故答案为:100+100

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.

(1)求抛物线的解析式

(2)若点M为第三象限内抛物线上一动点M的横坐标为m,△AMB的面积为S.S

关于m的函数关系式并求出S的最大值

(3)若点P是抛物线上的动点Q是直线y=-x上的动点判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把两条中线互相垂直的三角形称为中垂三角形.例如图1,图2,图3中,AFBE△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为中垂三角形.设BCaACbABc

特例探索

1)如图1,当∠ABE45°c时,a b

如图2,当∠ABE30°c4时,a b

归纳证明

2)请你观察(1)中的计算结果,猜想a2b2c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;

拓展应用

3)如图4,在□ABCD中,点EFG分别是ADBCCD的中点,BE⊥EGADAB3.求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

请结合以上信息解答下列问题:

(1)m=

(2)请补全上面的条形统计图;

(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为

(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.

(1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);

(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,线段AMBC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边CDE,连结BE

(1)求∠CAM的度数;

(2)若点D在线段AM上时,求证:ADCBEC

(3)当动D直线AM上时,设直线BE与直线AM的交点为O,试判断AOB是否为定值?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=13,AC=8,cosBAC=,BDAC,垂足为点D,EBD的中点,联结AE并延长,交边BC于点F.

(1)求∠EAD的余切值;

(2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.

(1)求证:四边形ABCD是平行四边形;

(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形ABCD中,AD∥BC,CD⊥BC,已知AB=5,BC=6,cosB=.点OBC边上的动点,以O为圆心,BO为半径的⊙O交边AB于点P.

(1)设OB=x,BP=y,求yx的函数关系式,并写出函数定义域;

(2)当⊙O与以点D为圆心,DC为半径⊙D外切时,求⊙O的半径;

(3)连接OD、AC,交于点E,当△CEO为等腰三角形时,求⊙O的半径.

查看答案和解析>>

同步练习册答案