【题目】港珠澳大桥,从2009年开工建造,于2018年10月24日正式通车.其全长55公里,连接港珠澳三地,集桥、岛、隧于一体,是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知≈1.73,tan20°≈0.36,结果精确到0.1)
科目:初中数学 来源: 题型:
【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.
(1)求甲、乙两种型号设备的价格;
(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;
(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数的图象与反比例函数 的图象交于两点,与轴交于点,点的坐标为,点的坐标为,且.
(1)求该反比例函数和一次函数的解析式;
(2)求点的坐标;
(3)在轴上是否存在点,使有最大值,如果存在,请求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,并完成相应任务.
古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400—前347)曾提出:能否将一
条线段分成不相等的两部分.使较短线段与较长线段的比等于较长线段与原线段的比,这个相等的比就是,黄金分割在我们生活中有广泛运用.黄金分割点也可以用折纸的方式得到.
第一步:裁一张正方形的纸片,先折出的中点,然后展平,再折出线段,再展平;
第二步:将纸片沿折叠,使落到线段上,的对应点为,展平;
第三步:沿折叠,使落在上,的对应点为,展平,这时就是的黄金分割点.
古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400—前347)曾提出:能否将一
条线段分成不相等的两部分.使较短线段与较长线段的比等于较长线段与原线段的比,这个相等的比就是,黄金分割在我们生活中有广泛运用.黄金分割点也可以用折纸的方式得到.
第一步:裁一张正方形的纸片,先折出的中点,然后展平,再折出线段,再展平;
第二步:将纸片沿折叠,使落到线段上,的对应点为,展平;
第三步:沿折叠,使落在上,的对应点为,展平,这时就是的黄金分割点.
任务:(1)试根据以上操作步骤证明就是的黄金分割点;
(2)请写出一个生活中应用黄金分割的实际例子.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为,看这栋大楼底部C的俯角为,热气球A的高度为270米,则这栋大楼的高度为______米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的面积为,它的两条对角线交于点,以、为两邻边作平行四边形,平行四边形的对角线交于点,同样以、为两邻边作平行四边形,…,依此类推,则平行四边形的面积为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为10.根据以上阅读材料,可构图求出代数式的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的两边在坐标轴上,点为平面直角坐标系的原点,以轴上的某一点为位似中心,作位似图形,且点的坐标,则位似中心的坐标为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com