精英家教网 > 初中数学 > 题目详情
如图1,点A(m,m+1)、B(m+3,m-1)均在反比例函数y=
k
x
的图象上,正比例函数y=nx的图象交反比例函数图象于A、C两点.
(1)求出k值和线段AC的长.
(2)在y轴上是否存在点D,使∠ADC=90°?若存在,求点D的坐标;若不存在,说明理由.
(3)如图2,若E(-4,3),点P是线段AC上的一个动点,试判断
50-CP•AP
EP2
的值是否发生变化?若不变,求出其值;若变化,说明理由.
(1)∵点A(m,m+1)、B(m+3,m-1)均在反比例函数y=
k
x
的图象上,
∴m(m+1)=(m+3)(m-1),
∴解得:m=3.
∴A(3,4)、B(6,2).
∴k=m(m+1)=12;
如图1,过A作AM⊥x轴于M,
则OM=3,AM=4,
∴AO=5.
根据反比例函数的对称性,AC=2AO=10;

(2)如图1,在y轴的正半轴上取OD=OA=5,连接AD、CD.
则OD=OA=OC.
则∠OCD=∠ODC,∠OAD=∠ODA.
在△ACD中,有∠ACD+∠ADC+∠CAD=180°.
即∠OCD+∠ODC+∠OAD+∠ODA=180°.
∴∠ODC+∠ODA=90°,
即∠ADC=90°.
∴D(0,5).
同理在y轴负半轴上还有点:D′(0,-5).

另法:如图1,设OD=t,由AD2+CD2=AC2
AE2+ED2+FD2+CF2=AC2
32+(t-4)2+32+(t+4)2=102
解得:t=±5.
则D(0,5)或D′(0,-5).

(3)
50-CP•AP
EP2
的值不发生变化,理由为:
如图2,连EO,过E作EN⊥x轴于N,过A作AM⊥x轴于M.
∵E(-4,3),A(3,4),
∴EO=OA=5,EN=OM=3,NO=AM=4,
在△ENO和△OMA中,
EO=AO
EN=OM
NO=AM

∴△ENO≌△OMA(SSS),
∴∠EON=∠OAM,
∴∠EON+∠AOM=∠OAM+∠AOM=90°,
∴∠EOA=90°,
设CP=t,则AP=10-t,
CP•AP=t(10-t)=10t-t2
而EP2=OP2+EO2=(5-t)2+52=50-10t+t2
∴50-CP•AP=50-(10t-t2)=50-10t+t2
∴50-CP•AP=EP2
50-CP•AP
EP2
=1,
50-CP•AP
EP2
的值不发生变化,其值恒为1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABOC在坐标系中,A(-3,
3
),将△ABO沿对角线AO折叠后点B落在B′处,则过点B′的双曲线的解析式为(  )
A.y=
9
3
4x
B.y=-
9
3
4x
C.y=
6
3
4x
D.y=-
6
3
4x

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点C在反比例函数y=
k
x
的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODC的面积是3.
(1)求反比例函数y=
k
x
的解析式;
(2)将过点O且与OC所在直线关于y轴对称的直线向上平移2个单位后得到直线AB,如果CD=1,求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A(-1,n),B(
1
2
,-2)是一次函数y=kx+b的图象和反比例函数y=
m
x
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴交点C的坐标及△AOB的面积;
(3)求方程kx+b-
m
x
=0的解(请直接写出答案);
(4)在y轴上是否存在一点P,使三角形PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,过A(0,2)作x轴的平行线,交函数y=-
2
x
(x<0)的图象于B,交函数y=
6
x
(x>0)的图象于C,则线段AB与线段AC的长度之比为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

对于函数y=
m-4
x
,当x<0时,y的值随x值的增大而减小,则m的取值范围是(  )
A.m>4B.m<4C.m>-4D.m<-4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,A为y轴正半轴上一点,过A作x轴的平行线,交函数y=-
2
x
(x<0)的图象于B,交函数y=
6
x
(x>0)的图象于C,过C作y轴的平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(2)的条件下,求四边形AODC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数y=
k
x
(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案