精英家教网 > 初中数学 > 题目详情
已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,点C关于抛物线对称轴的对称点为点C1
(1)求抛物线的对称轴及点C、C1的坐标(可用含m的代数式表示);
(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C、C1、P、Q为顶点的四边形是平行四边形,求所有平行四边形的周长.
(1)∵y=x2-2x-m=(x-1)2-1-m,
∴对称轴为直线x=1,
令x=0,得y=-m,即C(0,-m),
又∵C1与C点关于抛物线的对称轴对称,
∴C1(2,-m);

(2)如图所示
①当P′QCC1且P′Q=2时,P′横坐标为3,代入二次函数解析式求得P′(3,3-m),
②当PQCC1且PQ=2时,P横坐标为-1,代入二次函数解析式求得P(-1,3-m),
③因为CC1⊥Q'P″,当Q′F=P″F,CF=C1F时,P″为二次函数顶点坐标,为(1,-1-m),
由于P″和Q′关于直线CC1对称,
所以Q′纵坐标为2(-m)+1+m=-m+1,
得Q′(1,1-m),
所以满足条件的P、Q坐标为P(-1,3-m),Q(1,3-m);P′(3,3-m),Q(1,3-m);P″(1,-1-m),Q′(1,1-m),
∵Q点纵坐标为3-m,C点纵坐标为-m,
∴CW=3-m+m=3,又因为WQ=1,
∴CQ=
12+32
=
10
,又因为CC1=2,
∴平行四边形CC1P′Q周长为(2+
10
)×2=4+2
10

同理,平行四边形CC1QP周长也为4+2
10

∵CF=1,FQ=
1
2
[1-m-(-1-m)]=1,C′Q=
12+12
=
2

∴平行四边形CC1P′Q周长为4
2

综上所述:平行四边形周长为4+2
10
或4
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以点A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴相交于点D、E.若抛物线y=
1
4
x2+bx+c
经过C、D两点,求抛物线的解析式,并判断点B是否在抛物线上.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的图象经过(0,3),(-2,-5)和(1,4)三点,则它的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,
9
2
).
(1)求抛物线的函数表达式;
(2)设抛物线的对称轴与x轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标;
(3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EFAC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=-
3
3
x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+(2m-1)x+m2-1(m为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设(1)中的抛物线与x轴的另一个交点为Q,抛物线的顶点为P,试求经过O、P、Q三点的圆的圆心O′的坐标;
(3)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C,
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

计算机把数据存储在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道叫做磁道.如图,现有一张半径为45mm,有
10
3
(45-r)条磁道的磁盘,这张磁盘最内磁道的半径为rmm.
(1)磁盘最内磁道上每0.015mm的弧长为1个存储单元,用r的代数式表示这条磁道有多少个存储单元?
(2)如果各磁道的存储单元数目与最内磁道相同,且磁盘的存储量是225000π个存储单元,求最内磁道的半径r是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE-ED-DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分).则下列结论错误的是(  )
A.AD=BE=5cm
B.cos∠ABE=
3
5
C.当0<t≤5时,y=
2
5
t2
D.当t=
29
4
秒时,△ABE△QBP

查看答案和解析>>

同步练习册答案