A. | 88 | B. | $\frac{98}{9}$ | C. | $\frac{49}{9}$ | D. | $\frac{44}{3}$ |
分析 先根据反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=$\frac{1}{2}$|k|=8,再根据相似三角形的面积比等于相似比的平方得到3个阴影部分的三角形的面积从而求得面积和.
解答 解:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=$\frac{1}{2}$|k|=8,
∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,
设图中阴影部分的面积从左向右依次为s1,s2,s3
则s1=$\frac{1}{2}$|k|=8,
∵OA1=A1A2=A2A3,
∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,
∴图中阴影部分的面积分别是s1=8,s2=2,s3=$\frac{8}{9}$,
∴图中阴影部分的面积之和=8+2+$\frac{8}{9}$=$\frac{98}{9}$.
故选B.
点评 此题综合考查了反比例函数系数k的几何意义以及反比例函数图象上点的坐标特征,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com