精英家教网 > 初中数学 > 题目详情

已知:平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F(如图所示).

求证:四边形AFCE是菱形.

答案:略
解析:

∵四边形ABCD是平行四边形,∴AEFC

∴∠1=2

又∠AOE=COFAO=CO

∴△AOE≌△COF

EO=FO

∴四边形AFCE是平行四边形。

EFAC

∴平行四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在平行四边形ABCD中,点M、N分别是边DC、BC的中点,
AB
=
a
AD
=
b
,那么
MN
关于
a
b
的分解式是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在平行四边形ABCD中,点E在边BC上,射线AE交BD于点G,交DC的延长线于点F,AB=6,BE=3EC,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在平行四边形ABCD中,向量
AB
=
a
BC
=
b
,那么向量
BD
等于(  )
A、
a
+
b
B、
a
-
b
C、-
a
+
b
D、-
a
-
b

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:平行四边形ABCD,以AB为直径的⊙O交对角线BD于P,交边BC于Q,连接AQ交BD精英家教网于E,若BP=PD,
(1)判断平行四边形ABCD是何种特殊平行四边形,并说明理由;
(2)若AE=4,EQ=2,求:四边形AQCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平行四边形ABCD中,点E、F分别在边AB、CD上,且AE=2EB,CF=2FD,连接EF.
(1)写出与
FC
相等的向量
AE
AE

(2)填空
AD
+
EB
-
EF
=
AE
FC
AE
FC

(3)求作:
AD
-
FE
.(保留作图痕迹,不要求写作法,请说明哪个向量是所求作的向量)

查看答案和解析>>

同步练习册答案