分析 (1)原式中的2变形为(3-1),利用平方差公式计算即可得到结果;
(2)归纳总结得到一般性规律,即可确定出结果的个位;
(3)分a≠1与a=1两种情况,求出原式的值即可.
解答 解:(1)原式=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1
=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)+1
=(34-1)(34+1)(38+1)(316+1)(332+1)+1
=(38-1)(38+1)(316+1)(332+1)+1
=(316-1)(316+1)(332+1)+1
=(332-1)(332+1)+1
=364-1+1
=364;
(2)31=3,32=9,33=27,34=81,35=243,
依次以3,9,7,1循环,
∵64÷4=16,∴364的个位数字是1;
(3)当a≠1时,
原式=$\frac{1}{a-1}$(a-1)(a+1)(a2+1)(a4+1)(a8+1)(a16+1)…(a1024+1)
=$\frac{1}{a-1}$(a2-1)(a2+1)(a4+1)(a8+1)(a16+1)…(a1024+1)
=$\frac{1}{a-1}$(a4-1)(a4+1)(a8+1)(a16+1)…(a1024+1)
=$\frac{1}{a-1}$(a8-1)(a8+1)(a16+1)…(a1024+1)
=$\frac{1}{a-1}$(a16-1)(a16+1)…(a1024+1)
=$\frac{1}{a-1}$(a2048-1)
=$\frac{{a}^{2048}-1}{a-1}$;
当a=1时,原式=211.
点评 此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
科目:初中数学 来源: 题型:选择题
A. | 40° | B. | 50° | C. | 65° | D. | 70° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com