精英家教网 > 初中数学 > 题目详情
某海滨浴场的海岸线可以看作直线l(如图),有两位救生员在岸边的点A同时接到了海中的点B(该点视为定点)的呼救信号后,立即从不同的路径前往救助.其中1号救生员从点A先跑300米到离点B最近的点D,再跳入海中沿直线游到点B救助;2号救生员先从点A跑到点C,再精英家教网跳入海中沿直线游到点B救助.如果两位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,且∠BAD=45°,∠BCD=60°,请问1号救生员与2号救生员谁先到达点B?
分析:1号的路程应该是AD+BD,2号的路程应该是AC+BC,那么关键是求出AC、BC的长,已知∠BAC、∠BCD的度数,那么可先在直角三角形ABD中,求出BD的长.然后用BD的长,在直角三角形BCD中求出BC、CD的长,那么AC就可以用AD-CD求出.有了路程再根据路程=速度×时间,即可求出两者用的时间,最后进行比较即可.
解答:解:∵AD=300米且∠BAD=45°,
∴BD=300米.
又∵∠BCD=60°,
∴CD=100
3
米,BC=200
3
米.
∴AC=AD-CD=300-100
3
(米).
则1号救生员所用时间:
t1=tAD+tBD=300÷6+300÷2=200(秒).
2号救生员所用时间:
t2=tAC+tBC=(300-100
3
)÷6+200
3
÷2=50+
250
3
3
秒,
∵t1>t2
∴2号救生员先到B点.
点评:本题主要考虑了解直角三角形的应用,读懂题意是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•温州)某海滨浴场东西走向的海岸线可近似看作直线l(如图).救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号.他立即沿AB方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若CD=40米,B在C的北偏东35°方向,甲、乙的游泳速度都是2米/秒.问谁先到达B处?请说明理由.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中数学 来源: 题型:

某海滨浴场的海岸线可看作直线l,两位救生员小雷和小锋在岸边的点A同时接到了海中的B(该点视为定点)的呼救信号后,立即从不同的路径前往救助,其中小雷先从点A跑到离点B最近的点D(即BD⊥直线l),再跳入海中沿直线DB游到点B救助:小锋先A跑到点C再跳入海中沿直线游到点B救助.如果两人在岸上跑步速度都是5米/秒,在水中游泳的速度都是2米/秒,且∠BAD=37°,∠BCD=45°,AC=100米,试通过计算说明小雷和小锋谁先到达点B.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
2
=1.414

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某海滨浴场的海岸线可看作直线l,两位救生员小雷和小锋在岸边的点A同时接到了海中的B(该点视为定点)的呼救信号后,立即从不同的路径前往救助,其中小雷先从点A跑到离点B最近的点D(即BD⊥直线l),再跳入海中沿直线DB游到点B救助:小锋先A跑到点C再跳入海中沿直线游到点B救助.如果两人在岸上跑步速度都是5米/秒,在水中游泳的速度都是2米/秒,且∠BAD=37°,∠BCD=45°,AC=100米,试通过计算说明小雷和小锋谁先到达点B.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,数学公式

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某海滨浴场的海岸线可看作直线l,两位救生员小雷和小锋在岸边的点A同时接到了海中的B(该点视为定点)的呼救信号后,立即从不同的路径前往救助,其中小雷先从点A跑到离点B最近的点D(即BD⊥直线l),再跳入海中沿直线DB游到点B救助:小锋先A跑到点C再跳入海中沿直线游到点B救助.如果两人在岸上跑步速度都是5米/秒,在水中游泳的速度都是2米/秒,且
精英家教网
∠BAD=37°,∠BCD=45°,AC=100米,试通过计算说明小雷和小锋谁先到达点B.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
2
=1.414

查看答案和解析>>

科目:初中数学 来源:2010-2011学年重庆市南开中学九年级(上)月考数学试卷(10月份)(解析版) 题型:解答题

某海滨浴场的海岸线可看作直线l,两位救生员小雷和小锋在岸边的点A同时接到了海中的B(该点视为定点)的呼救信号后,立即从不同的路径前往救助,其中小雷先从点A跑到离点B最近的点D(即BD⊥直线l),再跳入海中沿直线DB游到点B救助:小锋先A跑到点C再跳入海中沿直线游到点B救助.如果两人在岸上跑步速度都是5米/秒,在水中游泳的速度都是2米/秒,且∠BAD=37°,∠BCD=45°,AC=100米,试通过计算说明小雷和小锋谁先到达点B.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,

查看答案和解析>>

同步练习册答案