阅读下列材料:
问题:如图1,在□ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线
EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.
求证:EG =AG+BG.
小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理使
问题得到解决.
参考小明同学的思路,探究并解决下列问题:
(1)完成上面问题中的证明;
(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.
图1 图2
解:(1)证明:如图,作∠GAH=∠EAB交GE于点H.
∴∠GAB=∠HAE. ………………………………………………………1分
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH. …………………………………………………………2分
∵又AB=AE,
∴△ABG≌△AEH. …………3分
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=60°,
∴△AGH是等边三角形.
∴AG=HG.
∴EG=AG+BG. ……………………………………………………………4分
(2)线段EG、AG、BG之间的数量关系是…………5分
理由如下:
如图,作∠GAH=∠EAB交GE的延长线于点H.
∴∠GAB=∠HAE.
∵∠EGB=∠EAB=90°,
∴∠ABG+∠AEG=∠AEG+∠AEH =180°.
∴∠ABG=∠AEH.
∵又AB=AE,
∴△ABG≌△AEH. ………………6分
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=90°,
∴△AGH是等腰直角三角形.
∴AG=HG.
∴…………………………………………………………7分
科目:初中数学 来源: 题型:
为了激发学生学习英语的兴趣,某中学举行了校园英文歌曲大赛,并设立了一、二、三等奖。学校计划根据设奖情况共买50件奖品,其中购买二等奖奖品件数比一等奖奖品件数的2倍件数还少10件,购买三等奖奖品所花钱数不超过二等奖所花钱数的1.5倍,且三等奖奖品数不能少于前两种奖品数之和.其中各种奖品的单价如下表所示,如果计划一等奖奖品买x件,买50件奖品的总费用是w元.
(1)用含有x的代数式表示:该校团委购买二等奖奖品多少件,三等奖奖品多少件?并表示w与x的函数关系式;
(2)请问共有哪几种方案?
(3)请你计算一下,学校应如何购买这三种奖品,才能使所支出的总费用最少,最少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,如果通常新手的成绩都不太稳定,那么根据图中所给的信息,估计小林和小明两人中新手是 (填“小林”或“小明”).
查看答案和解析>>
科目:初中数学 来源: 题型:
某校数学兴趣小组的成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布表和频数分布直方图.
请你根据图表提供的信息,解答下列问题:
(1)频数分布表中a= ,b= ;
(2)补全频数分布直方图;
(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
选 手 | 甲 | 乙 | 丙 | 丁 |
平均数(环) | 9.2 | 9.2 | 9.2 | 9.2 |
方差(环2) | 0.035 | 0.015 | 0.025 | 0.027 |
则这四人中成绩发挥最稳定的是
A.甲 B.乙 C.丙 D.丁
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com