【题目】如图l,四边形中,,为的中点,为上一动点,连接并延长至点,使得,连接、、、.
(1)四边形一定是___________(提醒你:填特殊四边形的名称);
(2)如图2,若,,,是否存在这样的点,使得四边形为菱形,若存在,计算菱形的面积;若不存在,请说明理由.
(3)如图3,若,,(),是否存在这样的点,使得四边形为矩形,若存在,请求出的最大值;若不存在,请说明理由.
【答案】(1)见解析;(2)存在点,使得四边形为菱形,菱形的面积为45;(3)存在点,使得四边形为矩形,EF最大值为
【解析】
(1)根据对角线互相平分的四边形是平行四边形即可证明;(2)根据菱形定义可得DF=CF,根据勾股定理列方程求AF长,根据全等可证出∠DFC=90°,从而得四边形DFCG是正方形,根据面积公式求解;(3)根据矩形定义可得∠DFC=90°,根据相似得对应边成比例,列出m与AF长的关系,利用二次函数的最值问题确定m的最大值,再根据勾股定理求得DC长,即为EG长,从而确定EF的长.
解:(1)四边形DFCG一定是平行四边形,理由如下:
∵E为DC的中点,
∴DE=CE,
∵EG=FE,
∴四边形DFCG是平行四边形.
(2)存在点F,使得四边形为菱形,理由如下:
如图2, ∵四边形是平行四边形,
∴当DF=FC时,四边形是菱形,
∴AD2+AF2=BC2+BF2,
∴32+AF2=62+(9-AF)2
解得,AF=6,
∴AF=BC=6,AD=BF=3,∠A=∠B=90°,
∴△ADF≌CFB,
∴∠AFD=∠BCF,
∵∠BCF+∠BFC=90°,
∴∠AFD+∠BFC=90°,
∴∠DFC=90°,
∴四边形是正方形,
∴S四边形DFCG=DF2=AD2+AF2=32+62=45.
即当AF=6时,四边形是菱形,且面积为45.
(3)存在点F,使得四边形为矩形,理由如下:
如图3, ∵四边形是平行四边形,
∴当∠DFC=90°时,四边形是矩形,
∴∠DFA+∠BFC=90°,
∵∠ADF+∠AFD=90°,
∴∠ADF=∠BFC,
∵∠A=∠B=90°,
∴△ADF∽△BFC,
∴
设AF=x,
∴,
∴ ,
∵m与x成二次函数关系,且a= ,
∴抛物线开口向下,m有最大值,
∴当x= 时,m的最大值为 .
作DM⊥BC,垂足为M,由勾股定理得,DC2=DM2+CM2
∴当m为最大值时,DC长最大为 ,
∵四边形是矩形
∴EG=DC,
∴EF的最大值为 .
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线y=上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.
(3)在(2)的条件下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为s,求s与t之间的函数关系式,写出自变量t的取值范围,并求s取大值时,点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,完成(1)~(3)题.
数学课上,老师出示了这样一道题:
如图1,△ABC中,AC=BC=a,∠ACB=90°,点D在AB上,且AD=kAB(其中0<k<),直线CD绕点D顺时针旋转90°与直线CB绕点B逆时针旋转90°后相交于点E,探究线段DC、DE的数量关系,并证明.
同学们经过思考后,交流了自己的想法:
小明:“通过观察和度量,发现DC与DE相等”;
小伟:“通过构造全等三角形,经过进一步推理,可以得到DC与DE相等”
小强:“通过进一步的推理计算,可以得到BE与BC的数量关系”
老师:“保留原题条件,连接CE交AB于点O.如果给出BO与DO的数量关系,那么可以求出COEO的值”
(1)在图1中将图补充完整,并证明DC=DE;
(2)直接写出线段BE与BC的数量关系 (用含k的代数式表示);
(3)在图2中将图补充完整,若BO=DO,求COEO的值(用含a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示。设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价)。
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数解析式;
(2)求总利润w关于x的函数解析式;
(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润。
饮料 | 果汁饮料 | 碳酸饮料 |
进价(元/箱) | 40 | 25 |
售价(元/箱) | 52 | 32 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有4张不透明的卡片,除正面上的图案不同外,其他均相同,将这4张卡片背面向上洗匀后放在桌面上.
(1)从中随机油取1张卡片,卡片上的图案是中心对称图形的概率为_________;
(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用列表的方法,求两次所抽取的卡片恰好都是中心对称图形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是( )
A. 若点(2,4)在其图象上,则(﹣2,4)也在其图象上
B. 当k>0时,y随x的增大而减小
C. 过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为k
D. 反比例函数的图象关于直线y=x和y=﹣x成轴对称
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种): 或者 .
(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com