精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.
分析:(1)根据OA、AB、OC的长,即可得到A、B、C三点的坐标,进而可用待定系数法求出抛物线的解析式;
(2)此题要通过构造全等三角形求解;过B作BM⊥x轴于M,由于∠EBF是由∠DBC旋转而得,所以这两角都是直角,那么∠EBF=∠ABM=90°,根据同角的余角相等可得∠EBA=∠FBM;易知BM=OA=AB=2,由此可证得△FBM≌△EBA,则AE=FM;CM的长易求得,关键是FM即AE的长;设抛物线的顶点为G,由于G点在线段AB的垂直平分线上,若过G作GH⊥AB,则GH是△ABE的中位线,G点的坐标易求得,即可得到GH的长,从而可求出AE的长,即可由CF=CM+FM=AE+CM求出CF的长;
(3)由(2)的全等三角形易证得BE=BF,则△BEF是等腰直角三角形,其面积为BF平方的一半;△BFC中,以CF为底,BM为高即可求出△BFC的面积;可设CF的长为a,进而表示出FM的长,由勾股定理即可求得BF的平方,根据上面得出的两个三角形的面积计算方法,即可得到关于S、a的函数关系式,根据函数的性质即可求出S的最小值及对应的CF的长.
解答:解:(1)由题意可得A(0,2),B(2,2),C(3,0),
设所求抛物线的解析式为y=ax2+bx+c(a≠0),
c=2
4a+2b+c=2
9a+3b+c=0

解得
a=-
2
3
b=
4
3
c=2

∴抛物线的解析式为y=-
2
3
x2
+
4
3
x+2;

(2)设抛物线的顶点为G,
则G(1,
8
3
),过点G作GH⊥AB,垂足为H,精英家教网
则AH=BH=1,GH=
8
3
-2=
2
3

∵EA⊥AB,GH⊥AB,
∴EA∥GH;
∴GH是△BEA的中位线,
∴EA=2GH=
4
3

过点B作BM⊥OC,垂足为M,则BM=OA=AB;
∵∠EBF=∠ABM=90°,
∴∠EBA=∠FBM=90°-∠ABF,
∴Rt△EBA≌Rt△FBM,
∴FM=EA=
4
3

∵CM=OC-OM=3-2=1,
∴CF=FM+CM=
7
3


(3)设CF=a,则FM=a-1,
∴BF2=FM2+BM2=(a-1)2+22=a2-2a+5,
∵△EBA≌△FBM,
∴BE=BF,
则S△BEF=
1
2
BE•BF=
1
2
(a2-2a+5),
又∵S△BFC=
1
2
FC•BM=
1
2
×a×2=a,
∴S=
1
2
(a2-2a+5)-a=
1
2
a2-2a+
5
2

即S=
1
2
(a-2)2+
1
2

∴当a=2(在0<a<3范围内)时,S最小值=
1
2
点评:此题主要考查了二次函数解析式的确定、全等三角形的判定和性质以及三角形面积的求法等重要知识点,能够正确的将求图形面积最大(小)问题转换为二次函数求最值的问题是解答(3)题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知直角梯形ABCD中,AD∥BC∥EF,∠A=90°,BC=DC=4,AC、BD交于E,且EF=ED.
(1)求证:△DBC为等边三角形.
(2)若M为AD的中点,求过M、E、C的抛物线的解析式.
(3)判定△BCD的外心是否在该抛物线上(说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

21、当我们遇到梯形问题时,我们常用分割的方法,将其转化成我们熟悉的图形来解决:
(1)按要求对下列梯形分割(分割线用虚线)
①分割成一个平行四边形和一个三角形;  ②分割成一个长方形和两个直角三角形;

(2)如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=4cm,BC=8cm,∠C=45°,请你用适当的方法对梯形分割,利用分割后的图形求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形的中位线长为 (  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直角梯形ABCD中,AD∥BC(AD<BC),∠B=90°,AB=AD+BC.点E是CD的中点,点F是AB上的点,∠ADF=45°,FE=a,梯形ABCD的面积为m.
(1)求证:BF=BC;
(2)求△DEF的面积(用含a、m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,∠C=60°,BC=12cm,DC=16cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为y cm2
(1)求AD的长及t的取值范围;
(2)求y关于t的函数关系式;
(3)是否存在这样的t,使得△PQB的面积为
9
3
2

查看答案和解析>>

同步练习册答案