【题目】如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k>0)的图象经过点D且与边BA交于点E,连接DE.
(1)连接OE,若△EOA的面积为2,则k= ;
(2)连接CA、DE与CA是否平行?请说明理由;
(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.
【答案】(1)k=4.(2)平行,理由见解析;(3)满足条件的点D存在,D的坐标为D(0.96,5).
【解析】
试题分析:(1)连接OE,根据反比例函数k的几何意义,即可求出k的值;
(2)连接AC,设D(x,5),E(3,),则BD=3﹣x,BE=5﹣,得到,从而求出
DE∥AC.
(3)假设存在点D满足条件.设D(x,5),E(3,),则CD=x,BD=3﹣x,BE=5﹣,AE=.作EF⊥OC,垂足为F,易得,△B′CD∽△EFB′,然后根据对称性求出B′E、B′D的表达式,列出,即=,从而求出(5﹣)2+x2=(3﹣x)2,即可求出x值,从而得到D点坐标.
解:(1)连接OE,如,图1,
∵Rt△AOE的面积为2,
∴k=2×2=4.
(2)连接AC,如图1,设D(x,5),E(3,),则BD=3﹣x,BE=5﹣,
=,
∴
∴DE∥AC.
(3)假设存在点D满足条件.设D(x,5),E(3,),则CD=x,
BD=3﹣x,BE=5﹣,AE=.
作EF⊥OC,垂足为F,如图2,
易证△B′CD∽△EFB′,
∴,即=,
∴B′F=,
∴OB′=B′F+OF=B′F+AE=+=,
∴CB′=OC﹣OB′=5﹣,
在Rt△B′CD中,CB′=5﹣,CD=x,B′D=BD=3﹣x,
由勾股定理得,CB′2+CD2=B′D2,
(5﹣)2+x2=(3﹣x)2,
解这个方程得,x1=1.5(舍去),x2=0.96,
∴满足条件的点D存在,D的坐标为D(0.96,5).
科目:初中数学 来源: 题型:
【题目】某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:
(1)本次接受随机抽样调查的学生人数为 人,图1中m的值是 .
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是 ;
(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;
(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .
(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列条件中:①∠A+∠B=∠C;②∠A﹕∠B﹕∠C=1﹕2﹕3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=∠B=∠C,能确定△ABC为直角三角形的条件有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com