【题目】如图1,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,过点C作CF⊥CP于点C,交AB于点F,过点B作BM⊥CF于点N,交AC于点M.
(1)若, ,求;
(2)若,求证: ;
(3)如图2,在其他条件不变的情况下,将“正方形ABCD”改为“矩形ABCD”,且 AB≠BC,AC=AP,取CP中点E,连接EB,交AC于点O,猜想:∠AOB与∠ABM之间有何数量关系?请说明理由.
【答案】(1);(2)证明见解析;(3)证明见解析.
【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=5∠ADC=∠CDP=∠ABC=∠BCD=90°,由勾股定理求出AC,得出AP,即可求出S△ACP;(2)在CF上截取NG=FN,连接BG,则CF-CG=2FN,证出∠BCF=∠DCP,由ASA证明△BCF≌△DCP,得出CF=CP,证出CG=BM,由SAS证明△ABM≌△BCG,得出∠AMB=∠BGC,因此∠BMC=∠BGF,由线段垂直平分线的性质得出BF=BG,得出∠BFG=∠BGF,因此∠BMC=∠CBM,即可得出结论;(3)连接AE,先证出∠BCA=2∠PAE,再证明∴A、D、E、C四点共圆,由圆周角定理得出∠DCP=∠PAE,得出∠BCF=∠PAE,证出∠BCA=2∠ABM,然后由三角形的外角性质即可得出结论.
试题解析:∴AD∥BC,AB=BC=CD=5,∠ADC=∠CDP=∠ABC=∠BCD=90,
∴AC= =,
∴AP=AC=×=,
∴S△ACP=AP×CD=××5=;
(2)证明:在CF上截取NG=FN,连接BG,如图1所示:
则CFCG=2FN,
∵CF⊥CP,
∴∠PCF=90°,
∴∠BCF=∠DCP,
在△BCF和△DCP中, ,
∴△BCF≌△DCP(ASA),
∴CF=CP,
∵CPBM=2FN,
∴CG=BM,
∵∠ABC=90°,BM⊥CF,
∴∠ABM=∠BCG,∠BFG=∠CBM,
在△ABM和△BCG中, ,
∴△ABM≌△BCG(SAS),
∴∠AMB=∠BGC,
∴∠BMC=∠BGF,
∵GN=FN,BM⊥CF,
∴BF=BG,
∴∠BFG=∠BGF,
∴∠BMC=∠CBM,
∴BC=MC;
(3)∠AOB=3∠ABM;理由如下:
连接AE并延长,交BC的延长线于点G,如图2所示:
∵AC=AP,E是CP的中点,
∴AE⊥CP,PE=CE,∠PAE=∠CAE,
∵AD∥BC,
∴∠BCA=∠PAC=2∠PAE,∠PAE=∠G,
∴△APE≌△GCE,
∴AE=GE,
∵CP是AG的垂直平分线,
∴BE=GE,
∴∠G=∠CBE,
∵CF⊥CP,
∴AG∥FC,
∴∠G=∠BCF,
∵∠PCF=90°,∠BCD=90°,
∴∠BCF=∠DCP,
∴∠CBE=∠BCF,
∵∠ABM+∠BFC=90°,∠BCF+∠BFC=90°,
∴∠ABM=∠BCF,
∴∠CBE=∠ABM.
∵∠DCP+∠P=90°,∠PAE+∠P=90°,
∴∠DCP=∠PAE,
∴∠BCF=∠PAE,
∴∠ABM=∠BCF=∠PAE,
∴∠BCA=2∠ABM,
∵∠AOB=∠CBE+∠BCA,
∴∠AOB=3∠ABM.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )
A.AB∥CD,AD∥BC
B.OA=OC,OB=OD
C.AD=BC,AB∥CD
D.AB=CD,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌AB,放置在教学楼的顶部(如图所示)。小明在操场上的点D处,用1m高的测角仪CD,从点C测得宣传牌的底部B的仰角为37,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌顶部A仰角为45.已知教学楼高BM=17米,且点A、B、M在同一直线上,求宣传牌AB高度(结果精确到0.1米。参考数据:,sin37≈0.60,cos37≈0.81,tan37≈0.75).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个小正方体,正方体的每个面分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com