精英家教网 > 初中数学 > 题目详情
20.如图,从数轴的原点O向右数出4个单位,记为点A,过点A作数轴的垂线并截取AB为1个单位长度,连接OB,以点O为圆心,以OB为半径画弧,交数轴的正半轴于点C,则点C所表示的实数为$\sqrt{17}$.

分析 根据勾股定理计算即可.

解答 解:OB=$\sqrt{{4}^{2}+{1}^{2}}$=$\sqrt{17}$,
∴点C所表示的实数为$\sqrt{17}$,
故答案为:$\sqrt{17}$.

点评 本题考查的是勾股定理的应用、数轴与实数的关系,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.计算:$\sqrt{1-\frac{16}{25}}$-$\sqrt{2}$+|1-$\sqrt{2}$|+$\root{3}{-64}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,已知点A,C在反比例函数y=$\frac{a}{x}$(a>0)的图象上,点B、D在反比例函数y=$\frac{b}{x}$(b<0)的图象上,AB∥CD∥x轴,AB、CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是(  )
A.25B.8C.6D.30

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,?ABCD的对角线AC,BD相交于点O,E是以A为圆心,以2为半径为圆上一动点,连接CE,点P为CE的中点,连接BP,若AC=a,BD=b,则BP的最大值为(  )
A.$\frac{a}{2}$+1B.$\frac{b}{2}$+1C.$\frac{a+b}{2}$D.$\frac{a+b}{2}$+1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.请阅读以下材料,并完成相应的任务.
如图(1),A,B两点在反比例函数y=$\frac{k}{x}$(x>0)的图象上,直线AB与坐标轴分别交于点C,D,求证:AD=BC.
下面是小明同学的部分证明过程:
证明:如图(2),过点A作AM⊥y轴于点M,过点B作BN⊥x轴于点N.
设直线AB的表达式为y=mx+n,A,B两点的横坐标分别为a,b,则$\left\{\begin{array}{l}{\frac{k}{a}=ma+n}\\{\frac{k}{b}=mb+n}\end{array}\right.$,解得m=-$\frac{k}{ab}$,n=$\frac{k(a+b)}{ab}$
∴直线AB的表达式y=-$\frac{k}{ab}$x+$\frac{k(a+b)}{ab}$
当x=0时,y=$\frac{k(a+b)}{ab}$,∴点D的坐标为(0,$\frac{k(a+b)}{ab}$)
∴DM=$\frac{k(a+b)}{ab}$-$\frac{k}{a}$=$\frac{k}{b}$…
(1)请补全小明的证明过程;
(2)如图(3),直线AB与反比例函数y=$\frac{k}{x}$(x>0)的图象交于点A($\frac{1}{2}$,9)和点C,与x轴交于点D,连接OC.若点B的坐标为(0,10),则点C的坐标为($\frac{9}{2}$,1),△OCD的面积为$\frac{5}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.
(1)请帮小丽设计一种可行的裁剪方案;
(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,将直角三角形(其中∠B=30°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于120度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.请阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:∵a2c2-b2c2=a4-b4,A
∴c2(a2-b2)=(a2+b2)(a2-b2),B
∴c2=a2+b2,C
∴△ABC为直角三角形.D
问:
(1)在上述解题过程中,从哪一步开始出现错误:C;
(2)错误的原因是:方程两边同时除以(a2-b2),而(a2-b2)的值可能是0;
(3)本题正确的结论是:该三角形是直角三角形或等腰三角形,请写出你认为正确的解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.随着全国各地空气出现严重污染,PM2.5屡屡爆表,我国多个城市发生雾霾天气,越来越多的人开始关注一个原本陌生的术语-PM2.5.某校九年级共有1000名学生,团委准备调查他们对“PM2.5”知识的了解程度.
(1)在确定调查方式时,团委设计了以下三种方案:
方案一:调查九年级部分女生;
方案二:调查九年级部分男生;
方案三:到九年级每个班去随机调查一定数量的学生.
请问其中最具有代表性的一个方案是方案三;
(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图,请你根据图中信息,将其补充完整;
(3)请你估计该校九年级约有多少名学生比较了解“PM2.5”的知识.

查看答案和解析>>

同步练习册答案