精英家教网 > 初中数学 > 题目详情
精英家教网已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
分析:(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.
(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.
解答:精英家教网(1)证明:连接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD为⊙O的半径,
∴DE是⊙O的切线.

(2)解:∵∠AED=90°,DE=6,AE=3,
AD=
DE2+AE2
=
62+32
=3
5

连接CD.
∵AC是⊙O的直径,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
AD
AE
=
AC
AD

3
5
3
=
AC
3
5

则AC=15(cm).
∴⊙O的半径是7.5cm.
点评:本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•路北区三模)已知:如图,直线MN交⊙O于A、B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若∠ADE=30°,⊙O的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•岳阳)已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线MN交⊙O于A、B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN,垂足为E.∠ADE=30°,⊙O的半径为2,图中阴影部分的面积为
3
-
3
3
-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,直线MN交⊙O于A、B两点,AC是直径,DE切⊙O于D,DE⊥MN于E.
(1)求证:AD平分∠CAM.
(2)若DE=8cm,AE=4cm,求⊙O的半径.

查看答案和解析>>

同步练习册答案