精英家教网 > 初中数学 > 题目详情
(2010•朝阳区二模)如图,平行四边形ABCD中,AD=8,CD=4,∠D=60°.点P与点Q是平行四边形ABCD边上的动点,点P以每秒1个单位长度的速度,从点C运动到点D,点Q以每秒2个单位长度的速度从点A→点B→点C运动,当其中一个点到达终点时,另一个点随之停止运动.点P与点Q同时出发,设运动时间为t,△CPQ的面积为S.
(1)求S关于t的函数关系式;
(2)求出S的最大值;
(3)t为何值时,以△CPQ的一边所在直线为轴翻折,翻折前后的两个三角形所组成的四边形是菱形?

【答案】分析:(1)当0<t≤2时,如图1,过点B作BD⊥BC,交DC的延长线于点E,根据三角形面积公式求得S关于t的函数关系式,当2<t≤4时,如图2,CP=t,BQ=2t-4,过点P作PF⊥BC,交BC的延长线于F点,由三角形面积公式求得S关于t的函数关系式,
(2)根据S关于t的函数关系式求出最大值,
(3)要使△CPQ为等腰三角形,则要CQ=CP,看看t是否存在.
解答:解:(1)①当0<t≤2时,如图1,过点B作BE⊥DC,交DC的延长线于点E,
∴∠BCE=∠D=60°
∴CE=4,由勾股定理得:BE=4
∴CP=t,S=
②当2<t≤4时,如图2,CP=t,BQ=2t-4,
CQ=8-(2t-4)=12-2t;∠DCF=∠B=60°,
∵∠F=90°,
∴∠CDF=30°,
∴CF=t,由勾股定理得:PF=t,
S=CQ×PF=×(12-2t)×t,
即S=-t2+3t.

(2)过点P作PF⊥BC,交BC的延长线于F点,
∵∠PCF=∠D=60°,
∴PF=t,
∴S△CPQ=-t2+3t=-(t-3)2+
t=3时,S有最大值
综上,S的最大值为

(3)当0<t≤2时,△CPQ不是等腰三角形,所以不存在符合条件的菱形.
当2<t≤4时,令CQ=CP,即t=12-2t,解得t=4.
∴当t=4时,△CPQ为等腰三角形,
即为△CPQ的一边所在直线为轴翻折,翻折前后的两个三角形组成的四边形为菱形.
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
练习册系列答案
相关习题

科目:初中数学 来源:2010年北京市朝阳区中考数学二模试卷(解析版) 题型:解答题

(2010•朝阳区二模)如图,在边长在2的正方形ABCD中,点F在x轴上一点,CF=1,过点B作BF的垂线,交y轴于点E;
(1)求过点E、B、F的抛物线的解析式;
(2)将∠EBF绕点B顺时针旋转,角的一边交y轴正半轴于点M,另一边交x轴于点N,设BM与(1)中抛物线的另一交点为G,当点G的横坐标为时,EM与NO有怎样的数量关系?请说明你的结论;
(3)点P在(1)中的抛物线上,且PE与y轴所成锐角的正切值为,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年北京市朝阳区中考数学二模试卷(解析版) 题型:解答题

(2010•朝阳区二模)如图,反比例函数y=(x>0)的图象经过点A.
(1)求反比例函数的解析式;
(2)若点B在y=(x>0)的图象上,求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源:2011年北京市中考数学模拟试卷(解析版) 题型:选择题

(2010•朝阳区二模)全球可被人类利用的淡水总量仅占总水量的0.00003,因此珍惜水,保护水是我们每一位公民义不容辞的责任,其中数字0.00003用科学记数法表示为( )
A.3×10-4
B.3×10-5
C.0.3×10-4
D.0.3×10-5

查看答案和解析>>

科目:初中数学 来源:2010年北京市朝阳区中考数学二模试卷(解析版) 题型:解答题

(2010•朝阳区二模)如图1,四边形ABCD,将顶点为A的角绕着顶点A顺时针旋转,角的一条边与DC的延长线交于点F,角的另一边与CB的延长线交于点E,连接EF.
(1)如果四边形ABCD为正方形,当∠EAF=45°时,有EF=DF-BE.请你思考如何证明这个结论(只需思考,不必写出证明过程);
(2)如图2,如果在四边形ABCD中,AB=AD,∠ABC=∠ADC=90°,当∠EAF=∠BAD时,EF与DF、BE之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论);
(3)如图3,如果在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,当∠EAF=∠BAD时,EF与DF、BE之间有怎样的数学关系?请写出它们之间的关系式并给予证明;
(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF的周长(直接写出结果即可).

查看答案和解析>>

同步练习册答案