精英家教网 > 初中数学 > 题目详情
中心对称图形的旋转角是
180°
180°
分析:利用中心对称图形的定义解答即可;
解答:解:中心对称图形的旋转角是180°,
故答案为:180°.
点评:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.
(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).
①等腰梯形是旋转对称图形,它有一个旋转角为180度.(

②矩形是旋转对称图形,它有一个旋转角为180°.(

(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是
①,③
(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.
(3)写出两个多边形,它们都是旋转对图形,都有一个旋转角为72°,并且分别满足下列条件
①是轴对称图形,但不是中心对称图形:
如正五边形、正十五边形

②既是轴对称图形,又是中心对称图形:
如正十边形、正二十边形

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京二模)在平面内,如果一个图形绕一个定点旋转一个角度α(α<360°)后,能与自身重合,那么就称这个图形是旋转对称图形,α为这个旋转对称图形的一个旋转角.例如,正方形绕着它的对角线交点旋转90°、180°、270°都能与自身重合,所以正方形是旋转对称图形,90°、180°、270°都可以是这个旋转对称图形的一个旋转角.请依据上述规定解答下列问题:
(1)判断下列命题的真假:
①等腰梯形是旋转对称图形.
②平行四边形是旋转对称图形.
(2)下列图形中,是旋转对称图形,且有一个旋转角是120°的是
①③
①③
(写出所有正确结论前的序号).
①等边三角形      ②有一个角是60°的菱形      ③正六边形      ④正八边形
(3)正五边形显然满足下面两个条件:
①是旋转对称图形,且有一个旋转角是72°.
②是轴对称图形,但不是中心对称图形.
思考:还有什么图形也同时满足上述两个条件?请说出一种.

查看答案和解析>>

科目:初中数学 来源:2005年初中毕业升学考试(江苏南京卷)数学(带解析) 题型:解答题

在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90°.

(1)判断下列命题的真假(在相应括号内填上“真”或“假”):
①等腰梯形是旋转对称图形,它有一个旋转角为180°.(        )
② 矩形是旋转对称图形,它有一个旋转角为180°.(      )
(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是            .(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形 .   
(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:
①是轴对称图形,但不是中心对称图形;   ②既是轴对称图形,又是中心对称图形.

查看答案和解析>>

科目:初中数学 来源:2005年初中毕业升学考试(江苏南京卷)数学(解析版) 题型:解答题

在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90°.

(1)判断下列命题的真假(在相应括号内填上“真”或“假”):

①等腰梯形是旋转对称图形,它有一个旋转角为180°.(         )

② 矩形是旋转对称图形,它有一个旋转角为180°.(       )

  (2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是             .(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形 .   

(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:

①是轴对称图形,但不是中心对称图形;    ②既是轴对称图形,又是中心对称图形.

 

查看答案和解析>>

同步练习册答案