A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据抛物线对称轴方程对②进行判断;根据自变量为-1时对应的函数值为负数可对③进行判断;根据抛物线的对称性,由抛物线与x轴的一个交点为(-2,0)得到抛物线与x轴的另一个交点为(4,0),则可对④进行判断;由抛物线开口方向得到a>0,由对称轴位置可得b<0,由抛物线与y轴的交点位置可得c<0,于是可对①进行判断.
解答 解:∵抛物线开口向上,
∴a>0,
∴b=-2a<0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc>0,所以①正确;
∵抛物线的对称轴为直线x=-$\frac{b}{2a}$=1,
∴2a+b=0,所以②正确;
∵x=-1时,y<0,
∴a-b+c<0,
即a+c<b,所以③错误;
∵抛物线与x轴的一个交点为(-2,0)
而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(4,0),所以④错误;
故正确答案为①②.
故选B.
点评 本题考查了二次项函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com