精英家教网 > 初中数学 > 题目详情

已知直线数学公式与x轴交于点A,与y轴交于点B,C是x轴上一点,如果∠ABC=∠ACB,
求:(1)点C的坐标;
(2)图象经过A、B、C三点的二次函数的解析式.

解:(1)设点C的坐标是(x,0),根据题意得
当x=0时,y=
当y=0时,x=1;
∴A点坐标是(1,0),B点坐标是(0,),
∴(1-0)2+(0-2=(x-1)2+02
解得x=3或-1,
∴C点坐标是(3,0)或(-1,0);

(2)设所求二次函数的解析式是y=ax2+bx+c,
把(1,0)、(0,)、(3,0)代入函数得

解得
∴所求函数解析式是y=x2-x+
把(1,0)、(0,)、(-1,0)代入函数得

解得
∴所求函数解析式是y=-x2+
故所求的二次函数的解析式是y=x2-x+或y=-x2+
分析:(1)先设点C的坐标是(x,0),分别令x=0、y=0,求出A、B点的坐标,再利用两点之间距离公式可得(1-0)2+(0-2=(x-1)2+02,求解即可求C点坐标;
(2)先设所求二次函数的解析式是y=ax2+bx+c,然后分别把(1,0)、(0,)、(3,0)以及(1,0)、(0,)、(-1,0)代入函数,可得三元一次方程组,求解即可.
点评:本题考查了一次函数的性质、待定系数法求函数解析式、解三元一次方程组.解题的关键是运用坐标系内两点之间距离的公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线与x轴交于点A(4,0),与y轴交于点B(0,3).若在x轴上有一点P,使△ABP为等腰三角形,则符合条件的点P的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线与y轴交于点B(0,1),与抛物线交于x轴上一点A,且tan∠BAO=
12
,而抛物线的顶点为P(-3,-3).
(1)求直线和抛物线的解析式;
(2)设抛物线与x轴的另一交点为C,求△PAC的面积.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(浙江台州卷)数学(带解析) 题型:解答题

如图1,已知直线与y轴交于点A,抛物线经过点A,其顶点为B,另一抛物线的顶点为D,两抛物线相交于点C

(1)求点B的坐标,并说明点D在直线的理由;
(2)设交点C的横坐标为m
①交点C的纵坐标可以表示为:        或        ,由此请进一步探究m关于h的函数关系式;
②如图2,若,求m的值

查看答案和解析>>

科目:初中数学 来源:2011年广东省深圳市中考数学模拟试卷(04)(解析版) 题型:解答题

如图,已知直线与x轴交于点A,与y轴交于点B,C是线段AB的中点.抛物线y=ax2+bx+c(a>0)过O、A两点,且其顶点的纵坐标为

(1)分别写出A、B、C三点的坐标;
(2)求抛物线的函数解析式;
(3)在抛物线上是否存在点P,使得以O、P、B、C为顶点的四边形是菱形?若存在,求所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案