精英家教网 > 初中数学 > 题目详情
(2010•番禺区二模)已知关于x的一元二次方程x2+mx-2m2-x+m=0(m为实数)有两个实数根x1、x2
(1)若x1=1,求x2
(2)当m取何值时,x1≠x2
【答案】分析:(1)把x1的值代入原方程求出关于m的方程中m的值,再把m的值代入原方程求出x2的值.
(2)根据根的判别式转化为完全平方式后,求m的取值.
解答:解:(1)∵x1=1,
∴12+m-2m2-1+m=0,
得m2-m=0,
即m=1,m=0.
①当m=0时,原方程化为x2-x=0,得x2=0;
②当m=1时,原方程化为x2+x-2×12-x+1=0,
即x2-1=0,得x2=-1.
(2)原方程化为x2+(m-1)x-2m2+m=0,
方法一:由一元二次方程根的判别式知:
△=(m-1)2-4×1×(-2m2+m)=m2-2m+1+8m2-4m=9m2-6m+1=(3m-1)2
要使x1≠x2,应△>0,
即△=(3m-1)2>0,
解得m≠
方法二:由x2+(m-1)x-2m2+m=0得x1=m,x2=1-2m
要使x1≠x2
即m≠1-2m,
∴m≠
点评:总结:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源:2009年广东省广州市番禺区中考数学二模试卷(解析版) 题型:解答题

(2010•番禺区二模)如图,直线l1的解析表达式为y=-3x+3,l1与x轴交于点D,直线l2经过点A,B,且直线l1,l2交于点C.
(1)求点D的坐标;
(2)求直线l2的解析表达式;
(3)若反比例函数经过点C,试求实数k的值.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市番禺区中考数学二模试卷(解析版) 题型:解答题

(2010•番禺区二模)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O交CA于点E,点G是AD的中点.
(1)求证:GE是⊙O的切线;
(2)若AC⊥BC,且AC=8,BC=6,求切线GE的长.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市番禺区中考数学二模试卷(解析版) 题型:填空题

(2010•番禺区二模)如图,已知一张三角形纸片ABC中,∠ACB=90°,BC=3cm,AB=6cm,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为    cm.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市番禺区中考数学二模试卷(解析版) 题型:选择题

(2010•番禺区二模)我区某街道为迎接亚运会,拟进行街边人行道路翻新,准备选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是( )

A.正三角形
B.正方形
C.正五边形
D.正六边形

查看答案和解析>>

同步练习册答案