【题目】如图,在Rt△ABC中,AD为斜边BC上的中线,AE∥BC,CE∥AD,EC的垂直平分线FG交AC点G,连接DG,若∠ADG=24°,则∠B的度数为_____度.
【答案】38
【解析】
连接GE,证明四边形ADCE为菱形,得到∠DAC=∠EAC,根据△AGD≌△AGE得到∠AEG=∠ADG=24°,根据线段垂直平分线的性质得到GC=GE,根据等腰三角形的性质得到∠GEC=∠ECA,根据平行线的性质列式计算即可.
解:连接GE,
∵AE∥BC,CE∥AD,
∴四边形ADCE为平行四边形,
∵Rt△ABC中,AD为斜边BC上的中线,
∴AD=BC=DC,
∴平行四边形ADCE为菱形,
∴∠DAC=∠EAC,
在△AGD和△AGE中,
,
∴△AGD≌△AGE(SAS)
∴∠AEG=∠ADG=24°,
∵四边形ADCE为菱形,
∴∠DCA=∠ECA,
∵GF是EC的垂直平分线,
∴GC=GE,
∴∠GEC=∠ECA,
∵AE∥BC,
∴∠AEC+∠BCE=180°,
∴3∠ACB+24°=180°,
解得,∠ACB=52°,
∴∠B=90°﹣52°=38°,
故答案为:38.
科目:初中数学 来源: 题型:
【题目】如图,三角形纸片中,沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,则下列结论:
①平分;
②;
③若,,,则的周长为7;
④;
⑤若平分与交于点,当时,.其中结论正确的有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是( )
A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:
(1)甲车的速度是 千米/时,乙车的速度是 千米/时;
(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;
(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=80°,∠BAC=40°.
(1)尺规作图作出AB的垂直平分线DE,分别与AC、AB交于点D、E.并连结BD;(保留作图痕迹,不写作法)
(2)证明:△ABC∽△BDC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+5与双曲线(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线(x>0)的交点有( )
A. 0个B. 1个C. 2个D. 0个,或1个,或2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:一般情形下等式=1不成立,但有些特殊实数可以使它成立,例如:x=2,y=2时,=1成立,我们称(2,2)是使=1成立的“神奇数对”.请完成下列问题:
(1)数对(,4),(1,1)中,使=1成立的“神奇数对”是 ;
(2)若(5﹣t,5+t)是使=1成立的“神奇数对”,求t的值;
(3)若(m,n)是使=1成立的“神奇数对”,且a=b+m,b=c+n,求代数式(a﹣c)2﹣12(a﹣b)(b﹣c)的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线AC与BD交于点O,DE∥AC交BA的延长线于点E.
(1)求证:BD=DE;
(2)若∠ACB=30°,BD=8,求四边形BCDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知中,如果过项点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.例如:如图1,中,,,若过顶点的一条直线交于点,若,显然直线是的关于点的二分割线.
(1)在图2的中,,.请在图2中画出关于点的二分割线,且角度是 ;
(2)已知,在图3中画出不同于图1,图2的,所画同时满足:①为最小角;②存在关于点的二分割线.的度数是 ;
(3)已知,同时满足:①为最小角;②存在关于点的二分割线.请求出的度数(用表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com