【题目】如图,矩形ABCD中,BC=12,CD=9,将△ABE沿BE折叠,使点A恰好落在对角线BD上的F处,则DE的长是( )
A. B. C. D.
【答案】C
【解析】分析:由ABCD为矩形,得到∠BAD为直角,且三角形BEF与三角形BAE全等,利用全等三角形对应角、对应边相等得到EF⊥BD,AE=EF,AB=BF,利用勾股定理求出BD的长,由BD-BF求出DF的长,在Rt△EDF中,设EF=x,表示出ED,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出DE的长.
详解:∵矩形ABCD,
∴∠BAD=90°,
由折叠可得△BEF≌△BAE,
∴EF⊥BD,AE=EF,AB=BF,
在Rt△ABD中,AB=CD=9,BC=AD=12,
根据勾股定理得:BD=15,即FD=15-9=6,
设EF=AE=x,则有ED=12-x,
根据勾股定理得:x2+62=(12-x)2,
解得:x=,
则DE=12-=,
故选C.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与轴、轴分别交于点、点,与双曲线 交于、两点,分别过点、点作轴,轴,垂足分别为点、点,
(1)求线段的长;
(2)若.
①求直线的解析式;
②请你判断线段与线段的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂对一批袋装食盐抽样检查,共抽取了20袋,假设标准质量为120g,超出的部分记为“+”,不足的部分记为“-”,则这20袋食盐对应的数据如下表所示(单位:g):
与标准质量的差值 | -4 | -2 | -1 | 0 | +0.5 | +1.5 | +2.5 |
袋数 | 1 | 2 | 3 | 6 | 4 | 2 | 2 |
(1)若合格标准为“120g2g”,试求这一批食盐的合格率;
(2)试求这20袋食盐的总质量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.
(1)求证:AE=CF;
(2)若∠ABE=55°,求∠EGC的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A,C在反比例函数y= (a>0)的图像上,点B,D在反比例函数y= (b<0)的图像上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a﹣b的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离为|4﹣1|= ;表示5和﹣2两点之间的距离为|5﹣(﹣2)|=|5+2|= ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a= .
(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;
(3)当a= 时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com