精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,四边形OABC为矩形,A(8,0),C(0,6),点M是OA的中点,P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以P精英家教网Q为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).
(1)用含t的代数式表示点P的坐标;
(2)分别求当t=1,t=5时,线段PQ的长;
(3)求S与t之间的函数关系式;
(4)连接AC.当正方形PRLQ与△ABC的重叠部分为三角形时,直接写出t的取值范围.
分析:(1)点P的纵坐标一定为0,横坐标再4的基础上随时间的增加每秒增加1个单位,所以t秒后的坐标是(4+t,0);
(2)当t<4时,线段PQ的长为2t,当t>4时,线段PQ的长固定不变是8;
(3)分三种情况讨论:当t<4时,s=4t2,当t=4时,s=48,当t>4时,s=(8-t2);
(4)结合一次函数与题意直接写出t的取值范围.
解答:解:(1)∵MP=t,OM=4,
∴OP=t+4,
∴P(t+4,0)(0≤t≤8).
(2)当t=1时,PQ=2×1=2.
当t=5时,OP=9,OQ=5-4=1,
∴PQ=9-1=8.
(3)如图①,当0≤t≤3时,
∵PQ=2t,
∴S=4t2
如图②,当3<t≤4时,
∵PQ=2t,AB=6,
∴S=12t.
如图③,当4<t≤8时,
∵AQ=4-(t-4)+4=12-t,AB=6,
∴S=-6t+72.
精英家教网
(4)如图④,当点R在AC上时,如图6,
精英家教网
∵RP∥OC,
∴△APR∽△AOC,
AP
OA
=
PR
OC

4-t
8
=
2t
6

∴t=
12
11

当点L在AC上时,如图7,
精英家教网
同理得出
LQ
OC
=
AQ
OA

2t
6
=
4+t
8

t=
12
5

12
11
<t≤
12
5

如图⑤,当点L在y轴上时,t=4.
精英家教网
综上可得:
12
11
<t≤
12
5
或t=4.
点评:本题主要考查了矩形的性质、正方形的性质以及坐标与图形的性质的综合题,注意仔细审题,考虑要全面.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案