精英家教网 > 初中数学 > 题目详情

如图所示,△ABC中,∠B=90°,AB=21,BC=20.若有一半径为10的圆分别与AB、BC相切,则下列何种方法可找到此圆的圆心


  1. A.
    ∠B的角平分线与AC的交点
  2. B.
    AB的中垂线与BC中垂线的交点
  3. C.
    ∠B的角平分线与AB中垂线的交点
  4. D.
    ∠B的角平分线与BC中垂线的交点
D
分析:因为圆分别与AB、BC相切,所以圆心到AB、CB的距离一定相等,都等于半径.而到角的两边距离相等的点在角的平分线上,圆的半径为10,所以圆心到AB的距离为10.因为BC=20,所以BC的中垂线上的点到AB的距离为10,所以∠B的角平分线与BC的中垂线的交点即为圆心.
解答:解:∵圆分别与AB、BC相切,
∴圆心到AB、CB的距离都等于半径,
∵到角的两边距离相等的点在角的平分线上,
∴圆心定在∠B的角平分线上,
∵因为圆的半径为10,
∴圆心到AB的距离为10,
∵BC=20,
又∵∠B=90°,
∴BC的中垂线上的点到AB的距离为10,
∴∠B的角平分线与BC的中垂线的交点即为圆心.
故选D.
点评:本题考查的是圆的确定,运用角平分线的判定和平行线的性质来解题,题目难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图所示,△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、AC于D、E,∠CAE:∠EAB=5:2,则∠B=
20°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△ABC中,AB=AC=10,BD是AC边的高线,DC=2,试求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△ABC中,BC的垂直平分线交AB于点E,若△ABC的周长为10,BC=4,则△ACE的周长是
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△ABC中,AB=AC,BD⊥AC,垂足为D,求∠DBC与∠A的关系.

查看答案和解析>>

同步练习册答案