【题目】如图,在△ABC中,∠ACB=,∠B=
,AC=1,BC=
,AB=2,AC在直线l上,将△ABC绕点A顺时针转到位置①可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+
;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+
…,按此顺序继续旋转,得到点P2016,则AP2016=( )
A. 2016+671B. 2016+672
C. 2017+671D. 2017+672
科目:初中数学 来源: 题型:
【题目】李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D落在AB边的点F处,得折痕AE,再折叠,使点C落在AE边的点G处,此时折痕恰好经过点B,如果AD=,那么AB长是多少?”常明说;“简单,我会. AB应该是_____”.
常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B,而是经过了AB边上的M点,如果AD=,测得EC=3BM,那么AB长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边中,
,现有两点
、
分别从点
、
同时出发,沿三角形的边运动,已知点
的速度为
,点
的速度为
.当点
第一次回到点
时,点
、
同时停止运动,设运动时间为
.
(1)当为何值时,
、
两点重合;
(2)当点、
分别在
、
边上运动,
的形状会不断发生变化.
①当为何值时,
是等边三角形;
②当为何值时,
是直角三角形;
(3)若点、
都在
边上运动,当存在以
为底边的等腰
时,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,、
、
.
(1)请画出关于
轴对称的
(其中
、
、
分别是
、
、
的对应点)并直接写出
点的坐标为 .
(2)若直线经过点
且与
轴平行,则点
关于直线
的对称点的坐标为 .
(3)在轴上存在一点
,使
最大,则点
的坐标为 .
(4)第一象限有一点,在
轴上找一点
使
最短,画出最短路径,保留作图迹.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,与AB交于点N,连接OM,ON,MN.下列四个结论:①△CNB≌△DMC;②OM=ON;③△OMN∽△OAD;④AN2+CM2=MN2,其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE=DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.
(1)填空:AB与EF的位置关系是 ;
(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;
(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若DC=2,AC=4,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程
(千米)的函数图象.
(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;
(2)求关于
的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com