精英家教网 > 初中数学 > 题目详情
12.某海滨浴场有100个遮阳伞,每个每天收租费10元时,可全部租出;若每个每天提高2元,则减少10个伞租出;若每个每天收费再提高2元,则再减少10个伞租出…为了投资最少而获利最大,每个每天应提高6.

分析 设每个每天提高2x元(0≤x≤10),每天的利润为y元,根据“总收入=租出去的遮阳伞个数×每个的租金”即可得出y关于x的函数关系式,再利用配方法结合二次函数的性质即可解决最值问题.

解答 解:设每个每天提高2x元(0≤x≤10,x为整数),每天的利润为y元,
根据题意得:y=(100-10x)(10+2x)=-20x2+100x+1000=-20$(x-\frac{5}{2})^{2}$+1125.
∵-20<0,
∴当x=$\frac{5}{2}$,y取最大值,
∵x为整数,
∴每个每天提高4元或6元时,每天的利润最大,最大利润为1000元.
又∵当x=3时需要的遮阳伞比当x=2时少,
故答案为:6.

点评 本题考查了二次函数的应用以及二次函数的性质,解题的关键是根据数量关系找出y关于x的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.当x=2+$\sqrt{3}$时,式子x2-4x+2017=2016.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如表给出一个二次函数的一些取值情况:
x01234
y30-103
(1)请在直角坐标系中画出这个二次函数的图象;
(2)根据图象说明:当x取何值时,y的值大于0?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若a<b,用“<”或“>”填空:
a-1<b-1; 
$-\frac{a}{7}$>$-\frac{b}{7}$; 
5a+2<5b+2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.点A的坐标为(3,-1),点B的坐标为(3,3),则线段AB所在的直线与x轴的位置关系是垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.零陵制衣厂某车间计划用10天时间加工一批出口童装和成人装共360件.该车间的加工能力是:每天能单独加工童装45件或成人装30件.
①该车间安排几天加工童装,几天加工成人装,才能如期完成任务?
②若加工一件童装可获利80元,加工成人装一件可获利120元,那么该车间加工完这批服装后,共可获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,线段AB被P1,P2,P3,…,Pn-1分成n(n≥2)份,设AP1=x,若P1P2=x+1,P2P3=x=2,P3P4=x+3,…,Pn-1B=x+(n-1),则称线段AB为n阶线段;其中AP1的长x叫做起分量,n称为线段AB的阶数.如:线段AB=9,可被P1,P2分为长为2,3,4三条线段(如图2),即:9=2+3+4,则AB称为起分量为2的3阶线段;也可被P1分为长4,5两条线段(如图3),即:9=4+5,则AB也可称为起分量为4的2阶线段.

(1)求起分量为7的3阶线段长;
(2)求长为39的6阶线段的起分量;
(3)长为15的线段可以是几阶线段,起分量分别是多少?(简要说明理由)
(4)直接写出长为2016,起分量为1的线段的阶数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解下列方程
(1)x2-2x=5
(2)(2x-1)(x+3)=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:
(1)l1和l2哪一条是描述小凡的运动过程,说说你的理由;
(2)小凡和小光谁先出发,先出发了多少分钟?
(3)小凡与小光谁先到达图书馆,先到了多少分钟?
(4)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)

查看答案和解析>>

同步练习册答案