精英家教网 > 初中数学 > 题目详情

如图,在∠AOD的内部作射线OB,使∠AOB=∠COD,则图中还有哪些相等的角____________________.

 

【答案】

∠AOC=∠BOD

【解析】本题主要考查了角的计算

根据∠COB加相等的两角,结果相等

解:∵∠AOB=∠COD

∴∠AOC=∠BOD

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知Rt△ABC的顶点A是一次函数y=x+m与反比例函数y=
mx
的图象在第一象限精英家教网内的交点,且S△AOB=3.
(1)该一次函数与反比例函数的解析式是否能完全确定如能确定,请写出它们的解析式;如不能确定,请说明理由.
(2)如果线段AC的延长线与反比例函数的图象的另一支交于D点,过D点作DE⊥x轴于E,那么△ODE的面积与△AOB的面积的大小关系能否确定?
(3)请判断△AOD为何特殊三角形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,过O点作EF∥A精英家教网D分别交AB,CD于点E,F.
(1)下面是小明对“△AOB与△DOC是否相似”的解答:
解:△AOB∽△DOC理由如下:
∵AD∥BC(  )
∴△AOD∽△COB
OA
OC
=
OD
OB
(  )
又∵∠AOB=∠DOC(  )
∴△AOB∽△DOC(  )
你认为小明的每一步解答过程是否正确?若正确,请在括号内填上理由;若不正确,请在该步骤后面的括号内打“×”.
(2)OE与OF有何关系?为什么?
(3)试求出
OE
AD
+
OF
BC
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•清流县质检)星期天,小明在解答下列题目时卡壳了.
题目1:如图①,在△ABC中,AC=BC,∠ACB=90°,O为△ABC内的一点,OC=1,OA=
3
,OB=
5
.求∠AOC的度数.
小明去请教小颖正在解答下列题目.
题目2:如图②,点O是等边三角形ABC内的一点,将△BCO绕C顺时针方向旋转60°得到△ADC,连接OD.
(1)试判断△COD的形状,并说明理由;
(2)当∠COB=150°时,试判断△AOD的形状,并写出OA、OB、OC三者之间的等量关系式.
小颖说:“等等,等我做完了,我们一起来看.”小明看完,小颖做完后高兴地说:“哈哈,太好了,我会了.”聪明的同学,你能先解答完题目2,再根据解答所得到的启迪来完成题目1吗?写出你的解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
m
x
(m≠0)的图象相交于第一、三象限内的A、B两点,与x轴相交于点C,连接AO,过点A作AD⊥x轴于点D,且OA=OC=5,cos∠AOD=
3
5

(1)求该反比例函数和一次函数的解析式;
(2)若点E在x轴上(异于点O),且S△BCO=S△BCE,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

请将下面证明中每一步的理由填在括号内:
如图,矩形ABCD的两条对角线相交于点O,已知∠AOD=120°,AB=2.5cm,求矩形对角线的长.
解:∵四边形ABCD是矩形,
∴AC=BD,且OA=OC=
1
2
AC
OB=OD=
1
2
BD
矩形的对角线相等且互相平分
矩形的对角线相等且互相平分

∴OA=OD.
∵∠AOD=120°,
∠ODA=∠OAD=
180°-120°
2
=30°
等边对等角
等边对等角

∵∠DAB=90°
矩形的四个角都是直角
矩形的四个角都是直角

∴BD=2AB=2×2.5=5
直角三角形30°角所对的直角边等于斜边的一半
直角三角形30°角所对的直角边等于斜边的一半

查看答案和解析>>

同步练习册答案