精英家教网 > 初中数学 > 题目详情
18.我们定义:若整式M与N满足:M+N=k(k为整数),我们称M与N为关于k的平衡整式,例如,若M+N=1,我们称M与N为关于1的平衡整式.若3x-10与y为关于2的平衡整式,2x与5y+10互为关5的平衡整式,求x+y的值.

分析 根据题中的新定义列出方程组,求出方程组的解得到x与y的值,即可求出x+y的值.

解答 解:依题意得:$\begin{array}{l}\left\{\begin{array}{l}3x-10+y=2\\ 2x+5y+10=5\end{array}\right.\end{array}$,
整理得:$\left\{\begin{array}{l}{3x+y=12①}\\{2x+5y=-5②}\end{array}\right.$,
由①×3+②×2得13x+13y=26,
整理得:x+y=2.

点评 此题考查了解二元一次方程组,弄清题中的新定义是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.已知x-1=$\sqrt{2016}$,求代数式(x+1)2-4(x+1)+4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在平面直角坐标系中,点O为坐标原点,△ABC是边长为16的正三角形,点A、B分别在x轴的正半轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则线段OC的长的最大值是8+8$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,E为正方形ABCD外一点,AE=DE=3,∠AED=45°,则BE的长为3$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-4,0),直线BC经过点B(-4,3),C(0,3),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤l80°)得到四边形OA′B′C′,此时直线OA′、直线B′C′,分别与直线BC相交于P,Q.在四边形OABC旋转过程中,若BP=$\frac{1}{2}$BQ,则点P的坐标为(-$\frac{9}{2}$-$\frac{3\sqrt{6}}{4}$,3)或(-$\frac{7}{8}$,3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算
(1)(x+2)(x2+4)(x-2)
(2)(2m+n-3)(2m-n+3)
(3)32013-5×32012+6×32011

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)如图,在直线m的同侧有A,B两点,在直线m上找点P,Q,使PA+PB最小,|QB-QA|最大(保留作图痕迹)

(2)平面直角坐标系内有两点A(2,3),B(4,5),请分别在x轴,y轴上找点P,Q,使PA+PB最小,|QB-QA|最大,则点P,Q的坐标分别为($\frac{11}{4}$,0),(0,1)
(3)代数式$\sqrt{{x}^{2}-8x+41}$+$\sqrt{{x}^{2}-4x+13}$的最小值是10,此时x=$\frac{11}{4}$
(4)代数式$\sqrt{{x}^{2}-8x+41}$-$\sqrt{{x}^{2}-4x+13}$的最大值是2$\sqrt{2}$,此时x=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且CE=BD,求证:DE>BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,一边长为30cm,宽20cm的长方形铁皮,四角各截去一个大小相同的正方形,将四边折起,可以做成一个无盖长方体容器,求所得容器的容积V关于截去的小正方形的边长x的函数关系式,并指出x的取值范围.

查看答案和解析>>

同步练习册答案