精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知⊙M的半径为2cm,圆心角∠AMB=120°,并建立如图所示的直角坐标系.
(1)求圆心M的坐标;
(2)求经过A、B、C三点抛物线的解析式;
(3)点D是位于AB所对的优弧上一动点,求四边形ACBD的最大面积;
(4)在(2)中的抛物线上是否存在一点P,使△PAB和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.
分析:(1)在直角△AMO中,根据三角函数就可以求出OM,就可以得到M的坐标.
(2)根据三角函数就可以求出A,B的坐标,抛物线经过点A、B、C,因而M一定是抛物线的顶点.根据待定系数法就可以求出抛物线的解析式.
(3)四边形ACBD的面积等于△ABC的面积+△ABP的面积,△ABC的面积一定,△ABP中底边AB一定,P到AB的距离最大是三角形的面积最大,即当P是圆与y轴的交点时面积最大.
(4)△PAB和△ABC相似,根据相似三角形的对应边的比相等,就可以求出P点的坐标.
解答:解:(1)由题意知:∠AMB=120°,
∴∠CMB=60°,∠OBM=30度.(2分)
∴OM=
1
2
MB=1,
∴M(0,1).(3分)

(2)由A,B,C三点的特殊性与对称性,知经过A,B,C三点的抛物线的解析式为y=ax2+c.(4分)
∵OC=MC-MO=1,OB=
MB2-OM2
=
3

∴C(0,-1),B(
3
,0).(5分)
∴c=-1,a=
1
3

∴y=
1
3
x2-1.(6分)

(3)∵S四边形ACBD=S△ABC+S△ABD,又S△ABC与AB均为定值,(7分)
∴当△ABD边AB上的高最大时,S△ABD最大,此时点D为⊙M与y轴的交点.(8分)
∴S四边形ACBD=S△ABC+S△ABD=
1
2
AB•OC+
1
2
AB•OD
=
1
2
AB•CD
=4
3
cm2.(9分)

(4)假设存在点P,如下图所示:精英家教网
方法1:
∵△ABC为等腰三角形,∠ABC=30°,
AB
BC
=
3

∴△ABC∽△PAB等价于∠PAB=30°,PB=AB=2
3
,PA=
3
PB=6.(10分)
设P(x,y)且x>0,则x=PA•cos30°-AO=3
3
-
3
=2
3
,y=PA•sin30°=3.(11分)
又∵P(2
3
,3)的坐标满足y=
1
3
x2-1,
∴在抛物线y=
1
3
x2-1上,存在点P(2
3
,3),
使△ABC∽△PAB.
由抛物线的对称性,知点(-2
3
,3)也符合题意.
∴存在点P,它的坐标为(2
3
,3)或(-2
3
,3).(12分)
说明:只要求出(2
3
,3),(-2
3
,3),无最后一步不扣分.下面的方法相同.
方法2:
当△ABC∽△PAB时,∠PAB=∠BAC=30°,又由(1)知∠MAB=30°,
∴点P在直线AM上.
设直线AM的解析式为y=kx+b,
将A(-
3
,0),M(0,1)代入,
解得
k=
3
3
b=1

∴直线AM的解析式为y=
3
3
x+1.(10分)
解方程组
y=
3
3
x+1
y=
1
3
x2-1

得P(2
3
,3).(11分)
又∵tan∠PBx=
3
2
3
-
3
=
3

∴∠PBx=60度.
∴∠P=30°,
∴△ABC∽△PAB.
∴在抛物线y=
1
3
x2-1上,存在点(2
3
,3),使△ABC∽△PAB.
由抛物线的对称性,知点(-2
3
,3)也符合题意.
∴存在点P,它的坐标为(2
3
,3)或(-2
3
,3).(12分)
方法3:
∵△ABC为等腰三角形,且
AB
BC
=
3

设P(x,y),则△ABC∽△PAB等价于PB=AB=2
3
,PA=
3
AB=6.(10分)
当x>0时,得
(x-
3
)
2
+y2
=2
3
(x+
3
)
2
+y2
=6

解得P(2
3
,3).(11分)
又∵P(2
3
,3)的坐标满足y=
1
3
x2-1,
∴在抛物线y=
1
3
x2-1上,存在点P(2
3
,3),使△ABC∽△PAB.
由抛物线的对称性,知点(-2
3
,3)也符合题意.
∴存在点P,它的坐标为(2
3
,3)或(-2
3
,3).(12分)
点评:本题主要考查了二次函数的知识,其中涉及了待定系数法求函数的解析式、相似三角形的对应边的比相等等知识,注意熟练掌握这些知识并灵活应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q.A,B两点同时从点精英家教网P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动.设运动时间为ts.
(1)求PQ的长;
(2)当t为何值时,直线AB与⊙O相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,作BD⊥AC于点D,OM⊥AB于点M.sin∠CBD=
13
.则OM=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,弦AB=8,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于(  )
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•新疆)如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.
(1)求证:AB为⊙O的切线;
(2)求弦AC的长;
(3)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的半径为5,两弦AB、CD相交于AB中点E,且AB=8,CE:ED=4:9,则圆心到弦CD的距离为(  )
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步练习册答案