精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B两点,且△ABO的面积为12.
(1)求k的值;
(2)若P为直线AB上一动点,P点运动到什么位置时,△PAO是以OA为底的等腰三角形,求点P的坐标;
(3)在(2)的条件下,连接PO,△PBO是等腰三角形吗如果是,试说明理由,如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.
(1)∵y=kx+6,
∴B(0,6),
∴OB=6.
又S△ABO=12,
∴OA=4,
∴A(-4,0).
把A(-4,0)代入y=kx+6,
即-4k+6=0,
解得k=
3
2


(2)过OA的中点作OA的垂线交直线AB于P,
则xP=-2,把xP=-2代入y=
3
2
x+6

得y=3,
∴P(-2,3);

(3)∵△APO是等腰三角形,
∴∠PAO=∠POA,
∵∠PAO+∠ABO=90°,∠POA+∠POB=90°,
∴∠ABO=∠POB,
∴△POB是等腰三角形;
理由:∵P(-2,3),OB=6,
∴P是OB中垂线上的一点.
∴PB=PO.
∴△POB是等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形AOCB的边长为4,点C在x轴上,点A在y轴上,E是AB的中点.
(1)直接写出点C、E的坐标;
(2)求直线EC的解析式;
(3)若点P是直线EC在第一象限的一个动点,当点P运动到什么位置时,图中存在与△AOP全等的三角形?请画出所有符合条件的图形,说明全等的理由,并求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,直线m是一次函数y=kx+b的图象.
(1)求k、b的值;
(2)当x=
1
2
时,求y的值;
(3)当y=3时,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.
(1)求点A、B、D的坐标;
(2)求直线BD的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,Rt△AOC的直角边OC在y轴正半轴,且顶点O与坐标原点重合,点A的坐标为(2,4),直线y=-x+b过点A,与x轴交点B.

(1)点B的坐标为______.
(2)动点P从点O出发,以每秒1个单位长的速度,沿O-C-A的路线向点A运动,同时动点M从点B出发,以相同的速度沿BO的方向向O运动,过点M作MQ⊥x轴,交线段BA或线段AO于点Q,当点P到达A点时,点P和点M都停止运动.在运动过程中,设动点P运动的时间为t秒.
①设△APQ的面积为S,求S关于t的函数关系式;
②是否存在以M、P、Q为顶点的三角形的面积与S相等?若存在,求t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-
3
4
x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.
(1)点A的坐标为______,点B的坐标为______;
(2)求OC的长度;
(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店计划购进某型号的螺丝、螺母进行销售,有关信息如下表:
原进价(元/个)零售价(元/个)成套售价(元/套)
螺丝a1.02.0
螺母a-0.30.62.0
(1)已知用50元购进螺丝的数量与用20元购进螺母的数量相同,求表中a的值;
(2)若该店购进螺母数量是螺丝数量的3倍还多200个,且两种配件的总量不超过3000个.
①该店计划将一半的螺丝配套(一个螺丝和两个螺母配成一套)销售,其余螺丝、螺母以零售方式销售.请问:怎样进货,才能获得最大利润?最大利润是多少?(用含a的代数式表示)
②由于原材料价格上涨,每个螺丝和螺母的进价都上涨了0.1元.按照①中的最佳进货方案,在销售价不变的情况下,全部售出后,所得利润比①少了260元,请问本次成套的销售量为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b的图象如图所示.
(1)求k、b的值;
(2)当x=-2时,求y的值;
(3)x取何值时y>-2.

查看答案和解析>>

同步练习册答案