精英家教网 > 初中数学 > 题目详情
正方形ABCD的边长为1,M为AB的中点,N为BC的中点,AN、CM相交于点O,则四边形AOCD的面积是( )
A.
B.
C.
D.
【答案】分析:利用锐角的正切值相等求出∠BAN=∠BCM,然后利用“角角边”证明△AMO和△CNO全等,根据全等三角形对应边相等可得OM=ON,再利用“SSS”证明△BOM与△BON全等,根据全等三角形的面积相等以及等底等高的三角形的面积相等可得S△AOM=S△BOM=S△BON=S△CON,再根据△ABN的面积求出△AOM的面积,然后用正方形的面积减去四部分三角形的面积,计算即可得解.
解答:解:如图,连接OB,
∵M为AB的中点,N为BC的中点,
∴AM=MB=CN=NB=
∴tan∠BAN=tan∠BCM=
∴∠BAN=∠BCM,
在△AMO和△CNO中,

∴△AMO≌△CNO(ASA),
∴OM=ON,
在△BOM和△BON中,

∴△BOM≌△BON(SSS),
又∵M、N是AB,AC的中点,
∴S△AOM=S△BOM=S△BON=S△CON
∵S△ABN=×1×=
∴S△AOM=÷3=
∴S四边形AOCD=1-×4=
故选A.
点评:本题考查了正方形的性质,全等三角形的判定与性质,等底等高的三角形的面积相等,求出△BOM与△BON全等是解题的关键,作出图形更形象直观.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网附加题
如图所示,正方形ABCD的边长为7,AE=BF=CG=DH=3,甲、乙两只蚂蚁同时从A点出发,甲蚂蚁以每秒
3
5
的速度沿路线AE→EF→FG→GH→HE→EB→BC→CD→DA循环爬行;乙蚂蚁以每秒
4
5
的速度沿路线AH→HG→GF→FE→EH→HD→DC→CB→BA循环爬行.那么出发后两只蚂蚁在第
 
s第一次相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP=3
2
,PE⊥PB交CD于点E,则PE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形ABCD的边长为4,P是BC上一动点,QP⊥AP交DC于Q,设PB=x,△ADQ的面积为y.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积;若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标;
(3)画出这个函数的图象;
(4)点P是否存在这样的位置,使△APB的面积是△ADQ的面积的
23
?若存在,求出BP的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为6,点M在边DC上,M,N两点关于对角线AC对称,若DM=2,则tan∠ADN=
3
2
3
2

查看答案和解析>>

同步练习册答案